Results 1 
4 of
4
Checking the Convexity of Polytopes and the Planarity of Subdivisions
, 1998
"... This paper considers the problem of verifying the correctness of geometric structures. In particular, we design simple optimal checkers for convex polytopes in two and higher dimensions, and for various types of planar subdivisions, such as triangulations, Delaunay triangulations, and convex subdivi ..."
Abstract

Cited by 23 (5 self)
 Add to MetaCart
This paper considers the problem of verifying the correctness of geometric structures. In particular, we design simple optimal checkers for convex polytopes in two and higher dimensions, and for various types of planar subdivisions, such as triangulations, Delaunay triangulations, and convex subdivisions. Their performance is analyzed also in terms of the algorithmic degree, which characterizes the arithmetic precision required
Proximity Drawings of Outerplanar Graphs
, 1996
"... A proximity drawing of a graph is one in which pairs of adjacent vertices are drawn relatively close together according to some proximity measure while pairs of nonadjacent vertices are drawn relatively far apart. The fundamental question concerning proximity drawability is: Given a graph G and a d ..."
Abstract

Cited by 11 (4 self)
 Add to MetaCart
A proximity drawing of a graph is one in which pairs of adjacent vertices are drawn relatively close together according to some proximity measure while pairs of nonadjacent vertices are drawn relatively far apart. The fundamental question concerning proximity drawability is: Given a graph G and a definition of proximity, is it possible to construct a proximity drawing of G? We consider this question for outerplanar graphs with respect to an infinite family of proximity drawings called fidrawings. These drawings include as special cases the wellknown Gabriel drawings (when fi = 1), and relative neighborhood drawings (when fi = 2). We first show that all biconnected outerplanar graphs are fidrawable for all values of fi such that 1 fi 2. As a side effect, this result settles in the affirmative a conjecture by Lubiw and Sleumer [20, 22], that any biconnected outerplanar graph admits a Gabriel drawing. We then show that there exist biconnected outerplanar graphs that do not admit any...
Convex Drawings of Graphs in Two and Three Dimensions (Preliminary Version)
"... We provide O(n)time algorithms for constructing the following types of drawings of nvertex 3connected planar graphs: ffl 2D convex grid drawings with (3n) \Theta (3n=2) area under the edge L1 resolution rule; ffl 2D strictly convex grid drawings with O(n 3 ) \Theta O(n 3 ) area under the e ..."
Abstract

Cited by 6 (0 self)
 Add to MetaCart
We provide O(n)time algorithms for constructing the following types of drawings of nvertex 3connected planar graphs: ffl 2D convex grid drawings with (3n) \Theta (3n=2) area under the edge L1 resolution rule; ffl 2D strictly convex grid drawings with O(n 3 ) \Theta O(n 3 ) area under the edge resolution rule; ffl 2D strictly convex drawings with O(1) \Theta O(n) area under the vertexresolution rule, and with vertex coordinates represented by O(n log n)bit rational numbers; ffl 3D convex drawings with O(1) \Theta O(1) \Theta O(n) volume under the vertexresolution rule, and with vertex coordinates represented by O(n log n)bit rational numbers. We also show the following lower bounds: ffl For infinitely many nvertex graphs G, if G has a straightline 2D convex drawing in a w \Theta h grid satisfying the edge L1 resolution rule then w;h 5n=6 +\Omega\Gamma20 and w + h 8n=3 + \Omega\Gamma838 ffl For infinitely many boundeddegree triconnected planar graphs G with n ver...
of Subdivisions
"... This paper considers the problem of verifying the correctness of geometric structures. In particular, we design simple optimal checkers for convex polytopes in two and higher dimensions, and for various types of planar subdivisions, such as triangulations, Delaunay triangulations, and convex subdivi ..."
Abstract
 Add to MetaCart
This paper considers the problem of verifying the correctness of geometric structures. In particular, we design simple optimal checkers for convex polytopes in two and higher dimensions, and for various types of planar subdivisions, such as triangulations, Delaunay triangulations, and convex subdivisions. Their performance is analyzed also in terms of the algorithmic degree, which characterizes the arithmetic precision required.