Results 1  10
of
38
A tutorial on support vector regression
, 2004
"... In this tutorial we give an overview of the basic ideas underlying Support Vector (SV) machines for function estimation. Furthermore, we include a summary of currently used algorithms for training SV machines, covering both the quadratic (or convex) programming part and advanced methods for dealing ..."
Abstract

Cited by 473 (2 self)
 Add to MetaCart
In this tutorial we give an overview of the basic ideas underlying Support Vector (SV) machines for function estimation. Furthermore, we include a summary of currently used algorithms for training SV machines, covering both the quadratic (or convex) programming part and advanced methods for dealing with large datasets. Finally, we mention some modifications and extensions that have been applied to the standard SV algorithm, and discuss the aspect of regularization from a SV perspective.
Support Vector Machines for Classification and Regression
 UNIVERSITY OF SOUTHAMPTON, TECHNICAL REPORT
, 1998
"... The problem of empirical data modelling is germane to many engineering applications.
In empirical data modelling a process of induction is used to build up a model of the
system, from which it is hoped to deduce responses of the system that have yet to be observed.
Ultimately the quantity and qualit ..."
Abstract

Cited by 193 (5 self)
 Add to MetaCart
The problem of empirical data modelling is germane to many engineering applications.
In empirical data modelling a process of induction is used to build up a model of the
system, from which it is hoped to deduce responses of the system that have yet to be observed.
Ultimately the quantity and quality of the observations govern the performance
of this empirical model. By its observational nature data obtained is finite and sampled;
typically this sampling is nonuniform and due to the high dimensional nature of the
problem the data will form only a sparse distribution in the input space. Consequently
the problem is nearly always ill posed (Poggio et al., 1985) in the sense of Hadamard
(Hadamard, 1923). Traditional neural network approaches have suffered difficulties with
generalisation, producing models that can overfit the data. This is a consequence of the
optimisation algorithms used for parameter selection and the statistical measures used
to select the ’best’ model. The foundations of Support Vector Machines (SVM) have
been developed by Vapnik (1995) and are gaining popularity due to many attractive
features, and promising empirical performance. The formulation embodies the Structural
Risk Minimisation (SRM) principle, which has been shown to be superior, (Gunn
et al., 1997), to traditional Empirical Risk Minimisation (ERM) principle, employed by
conventional neural networks. SRM minimises an upper bound on the expected risk,
as opposed to ERM that minimises the error on the training data. It is this difference
which equips SVM with a greater ability to generalise, which is the goal in statistical
learning. SVMs were developed to solve the classification problem, but recently they
have been extended to the domain of regression problems (Vapnik et al., 1997). In the
literature the terminology for SVMs can be slightly confusing. The term SVM is typically
used to describe classification with support vector methods and support vector
regression is used to describe regression with support vector methods. In this report
the term SVM will refer to both classification and regression methods, and the terms
Support Vector Classification (SVC) and Support Vector Regression (SVR) will be used
for specification. This section continues with a brief introduction to the structural risk
Query Learning with Large Margin Classifiers
, 2000
"... The active selection of instances can significantly improve the generalisation performance of a learning machine. Large margin classifiers such as Support Vector Machines classify data using the most informative instances (the support vectors). This makes them natural candidates for instance s ..."
Abstract

Cited by 123 (1 self)
 Add to MetaCart
The active selection of instances can significantly improve the generalisation performance of a learning machine. Large margin classifiers such as Support Vector Machines classify data using the most informative instances (the support vectors). This makes them natural candidates for instance selection strategies. In this paper we propose an algorithm for the training of Support Vector Machines using instance selection. We give a theoretical justification for the strategy and experimental results on real and artificial data demonstrating its effectiveness. The technique is most efficient when the dataset can be learnt using few support vectors. 1. Introduction The labourintensive task of labelling data is a serious bottleneck for many data mining tasks. Often cost or time constraints mean that only a fraction of the available instances can be labeled. For this reason there has been increasing interest in the problem of handling partially labeled datasets. One approach ...
On a Kernelbased Method for Pattern Recognition, Regression, Approximation, and Operator Inversion
, 1997
"... We present a Kernelbased framework for Pattern Recognition, Regression Estimation, Function Approximation and multiple Operator Inversion. Previous approaches such as ridgeregression, Support Vector methods and regression by Smoothing Kernels are included as special cases. We will show connection ..."
Abstract

Cited by 77 (25 self)
 Add to MetaCart
We present a Kernelbased framework for Pattern Recognition, Regression Estimation, Function Approximation and multiple Operator Inversion. Previous approaches such as ridgeregression, Support Vector methods and regression by Smoothing Kernels are included as special cases. We will show connections between the costfunction and some properties up to now believed to apply to Support Vector Machines only. The optimal solution of all the problems described above can be found by solving a simple quadratic programming problem. The paper closes with a proof of the equivalence between Support Vector kernels and Greene's functions of regularization operators.
Robust Linear and Support Vector Regression
 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE
, 2000
"... ..."
Regression Models for Ordinal Data: A Machine Learning Approach
, 1999
"... In contrast to the standard machine learning tasks of classification and metric regression we investigate the problem of predicting variables of ordinal scale, a setting referred to as ordinal regression. The task of ordinal regression arises frequently in the social sciences and in information retr ..."
Abstract

Cited by 16 (3 self)
 Add to MetaCart
In contrast to the standard machine learning tasks of classification and metric regression we investigate the problem of predicting variables of ordinal scale, a setting referred to as ordinal regression. The task of ordinal regression arises frequently in the social sciences and in information retrieval where human preferences play a major role. Also many multiclass problems are really problems of ordinal regression due to an ordering of the classes. Although the problem is rather novel to the Machine Learning Community it has been widely considered in Statistics before. All the statistical methods rely on a probability model of a latent (unobserved) variable and on the condition of stochastic ordering. In this paper we develop a distribution independent formulation of the problem and give uniform bounds for our risk functional. The main difference to classification is the restriction that the mapping of objects to ranks must be transitive and asymmetric. Combining our theoretical framework with results from measurement theory we present an approach that is based on a mapping from objects to scalar utility values and thus guarantees transitivity and asymmetry. Applying the principle of Structural Risk Minimization as employed in Support Vector Machines we derive a new learning algorithm based on large margin rank boundaries for the task of ordinal regression. Our method is easily extended to nonlinear utility functions. We give experimental results for an Information Retrieval task of learning the order of documents with respect to an initial query. Moreover, we show that our algorithm outperforms more naive approaches to ordinal regression such as Support Vector Classification and Support Vector Regression in the case of more than two ranks.
Model induction with support vector machines
 Introduction and PWASET VOLUME 26 DECEMBER 2007 ISSN 13076884 797 © 2007 WASET.ORG OF WORLD ACADEMY OF SCIENCE, ENGINEERING AND TECHNOLOGY VOLUME 26 DECEMBER 2007 ISSN 13076884 applications.”Journal of Computing in Civil Engineering, ASCE
, 2001
"... ..."
Support Vector Machines for Phoneme Classification
, 2001
"... In this thesis, Support Vector Machines (SVMs) are applied to the problem of phoneme classification. Given a sequence of acoustic observations and 40 phoneme targets, the task is to classify each observation to one of these targets. Since this task involves multiple classes, one of the main hurdles ..."
Abstract

Cited by 8 (0 self)
 Add to MetaCart
In this thesis, Support Vector Machines (SVMs) are applied to the problem of phoneme classification. Given a sequence of acoustic observations and 40 phoneme targets, the task is to classify each observation to one of these targets. Since this task involves multiple classes, one of the main hurdles SVMs must overcome is to extend the inherently binary SVMs to the multiclass case. To do this, several methods are proposed, and their generalisation abilities are measured. It is found that even though some generalisation is lost in the transition, this can still lead to effective classifiers. In addition, a refinement to the SVMs is made to derive estimated posterior probabilities from classifications. Since almost all speech recognition systems are based on statistical models, this is necessary if SVMs are to be used in a full speech recognition system. The best accuracy found was 71.4%, which is competitive with the best results found in literature.
Location Estimation via Support Vector Regression
"... Abstract—Location estimation using the Global System for Mobile communication (GSM) is an emerging application that infers the location of the mobile receiver from multiple signals measurements. While geometrical and signal propagation models have been deployed to tackle this estimation problem, the ..."
Abstract

Cited by 8 (0 self)
 Add to MetaCart
Abstract—Location estimation using the Global System for Mobile communication (GSM) is an emerging application that infers the location of the mobile receiver from multiple signals measurements. While geometrical and signal propagation models have been deployed to tackle this estimation problem, the terrain factors and power fluctuations have confined the accuracy of such estimation. Using support vector regression, we investigate the missing value location estimation problem by providing theoretical and empirical analysis on existing and novel kernels. A novel synthetic experiment is designed to compare the performances of different location estimation approaches. The proposed support vector regression approach shows promising performances, especially in terrains with local variations in environmental factors.
Mathematical Programming Approaches To Machine Learning And Data Mining
, 1998
"... Machine learning problems of supervised classification, unsupervised clustering and parsimonious approximation are formulated as mathematical programs. The feature selection problem arising in the supervised classification task is effectively addressed by calculating a separating plane by minimizing ..."
Abstract

Cited by 5 (0 self)
 Add to MetaCart
Machine learning problems of supervised classification, unsupervised clustering and parsimonious approximation are formulated as mathematical programs. The feature selection problem arising in the supervised classification task is effectively addressed by calculating a separating plane by minimizing separation error and the number of problem features utilized. The support vector machine approach is formulated using various norms to measure the margin of separation. The clustering problem of assigning m points in ndimensional real space to k clusters is formulated as minimizing a piecewiselinear concave function over a polyhedral set. This problem is also formulated in a novel fashion by minimizing the sum of squared distances of data points to nearest cluster planes characterizing the k clusters. The problem of obtaining a parsimonious solution to a linear system where the right hand side vector may be corrupted by noise is formulated as minimizing the system residual plus either the number of nonzero elements in the solution vector or the norm of the solution vector. The feature selection problem, the clustering problem and the parsimonious approximation problem can all be stated as the minimization of a concave function over a polyhedral region and are solved by a theoretically justifiable, fast and finite successive linearization algorithm. Numerical tests indicate the utility and efficiency of these formulations on realworld databases. In particular, the feature selection approach via concave minimization computes a separatingplane based classifier that improves upon the generalization ability of a separating plane computed without feature suppression. This approach produces ii classifiers utilizing fewer original problem features than the support vector machin...