Results 1 
5 of
5
OntheFly Analysis of Systems with Unbounded, Lossy FIFO Channels
 In CAV'98. LNCS 1427
, 1998
"... . We consider symbolic onthefly verification methods for systems of finitestate machines that communicate by exchanging messages via unbounded and lossy FIFO queues. We propose a novel representation formalism, called simple regular expressions (SREs), for representing sets of states of proto ..."
Abstract

Cited by 81 (19 self)
 Add to MetaCart
(Show Context)
. We consider symbolic onthefly verification methods for systems of finitestate machines that communicate by exchanging messages via unbounded and lossy FIFO queues. We propose a novel representation formalism, called simple regular expressions (SREs), for representing sets of states of protocols with lossy FIFO channels. We show that the class of languages representable by SREs is exactly the class of downward closed languages that arise in the analysis of such protocols. We give methods for (i) computing inclusion between SREs, (ii) an SRE representing the set of states reachable by executing a single transition in a system, and (iii) an SRE representing the set of states reachable by an arbitrary number of executions of a control loop of a program. All these operations are rather simple and can be carried out in polynomial time. With these techniques, one can construct a semialgorithm which explores the set of reachable states of a protocol, in order to check variou...
The Power of QDDs
, 1997
"... . Queuecontent Decision Diagrams (QDDs) are finiteautomaton based data structures for representing (possibly infinite) sets of contents of a finite collection of unbounded FIFO queues. Their intended use is to serve as a symbolic representation of the possible queue contents that can occur in the ..."
Abstract

Cited by 60 (2 self)
 Add to MetaCart
. Queuecontent Decision Diagrams (QDDs) are finiteautomaton based data structures for representing (possibly infinite) sets of contents of a finite collection of unbounded FIFO queues. Their intended use is to serve as a symbolic representation of the possible queue contents that can occur in the state space of a protocol modeled by finitestate machines communicating through unbounded queues. This is done with the help of a loopfirst search, a statespace exploration technique that attempts whenever possible to compute symbolically the effect of repeatedly executing a loop any number of times, making it possible to analyze protocols with infinite state spaces though without the guarantee of termination. This paper first solves a key problem concerning the use of QDDs in this context: it precisely characterizes when, and shows how, the operations required by a loopfirst search can be applied to QDDs. Then, it addresses the problem of exploiting QDDs and loopfirst searches to broad...
Symbolic Verification of Lossy Channel Systems: Application to the Bounded Retransmission Protocol
 In TACAS'99. LNCS 1579
, 1999
"... We consider the problem of verifying automatically infinitestate systems that are systems of finite machines that communicate by exchanging messages through unbounded lossy fifo channels. In a previous work [1], we proposed an algorithmic approach based on constructing a symbolic representation ..."
Abstract

Cited by 39 (6 self)
 Add to MetaCart
(Show Context)
We consider the problem of verifying automatically infinitestate systems that are systems of finite machines that communicate by exchanging messages through unbounded lossy fifo channels. In a previous work [1], we proposed an algorithmic approach based on constructing a symbolic representation of the set of reachable configurations of a system by means of a class of regular expressions (SREs). The construction of such a representation consists of an iterative computation with an acceleration technique which enhance the chance of convergence. This technique is based on the analysis of the effect of iterating control loops. In the work we present here, we experiment our approach and show how it can be effectively applied. For that, we developed a tool prototype based on the results in [1]. Using this tool, we provide a fully automatic verification of (the parameterized version of) the Bounded Retransmission Protocol, for arbitrary values of the size of the transmitted files, and the allowed number of retransmissions. ? Contact author. 1 1
Using Forward Reachability Analysis for Verification of Lossy Channel Systems
 Formal Methods in System Design
, 2004
"... We consider symbolic onthefly verification methods for systems of finitestate machines that communicate by exchanging messages via unbounded and lossy FIFO queues. We propose a novel representation formalism, called simple regular expressions (SREs), for representing sets of states of protoco ..."
Abstract

Cited by 38 (4 self)
 Add to MetaCart
We consider symbolic onthefly verification methods for systems of finitestate machines that communicate by exchanging messages via unbounded and lossy FIFO queues. We propose a novel representation formalism, called simple regular expressions (SREs), for representing sets of states of protocols with lossy FIFO channels. We show that the class of languages representable by SREs is exactly the class of downward closed languages that arise in the analysis of such protocols. We give methods for (i) computing inclusion between SREs, (ii) an SRE representing the set of states reachable by executing a single transition in a system, and (iii) an SRE representing the set of states reachable by an arbitrary number of executions of a control loop of a program. All these operations are rather simple and can be carried out in polynomial time. With these techniques, one can straightforwardly construct an algorithm which explores the set of reachable states of a protocol, in order t...