Results 1  10
of
106
Primaldual approximation algorithms for metric facility location and kmedian problems
 Journal of the ACM
, 1999
"... ..."
Approximation Algorithms for Projective Clustering
 Proceedings of the ACM SIGMOD International Conference on Management of data, Philadelphia
, 2000
"... We consider the following two instances of the projective clustering problem: Given a set S of n points in R d and an integer k ? 0; cover S by k hyperstrips (resp. hypercylinders) so that the maximum width of a hyperstrip (resp., the maximum diameter of a hypercylinder) is minimized. Let w ..."
Abstract

Cited by 246 (21 self)
 Add to MetaCart
We consider the following two instances of the projective clustering problem: Given a set S of n points in R d and an integer k ? 0; cover S by k hyperstrips (resp. hypercylinders) so that the maximum width of a hyperstrip (resp., the maximum diameter of a hypercylinder) is minimized. Let w be the smallest value so that S can be covered by k hyperstrips (resp. hypercylinders), each of width (resp. diameter) at most w : In the plane, the two problems are equivalent. It is NPHard to compute k planar strips of width even at most Cw ; for any constant C ? 0 [50]. This paper contains four main results related to projective clustering: (i) For d = 2, we present a randomized algorithm that computes O(k log k) strips of width at most 6w that cover S. Its expected running time is O(nk 2 log 4 n) if k 2 log k n; it also works for larger values of k, but then the expected running time is O(n 2=3 k 8=3 log 4 n). We also propose another algorithm that computes a c...
Local search heuristics for kmedian and facility location problems
, 2001
"... ÔÖÓ��ÙÖ�ØÓØ���ÐÓ��ÐÓÔØ�ÑÙÑ�ÓÖ�Ñ����ÒÛ � Ö�Ø�ÓÓ��ÐÓ�ÐÐÝÓÔØ�ÑÙÑ×ÓÐÙØ�ÓÒÓ�Ø��Ò��Ù×�Ò�Ø�� × ÐÓ�Ð�ØÝ��ÔÓ��ÐÓ�Ð×��Ö�ÔÖÓ��ÙÖ��×Ø��Ñ�Ü�ÑÙÑ �Ñ����Ò�Ò����Ð�ØÝÐÓ�Ø�ÓÒÔÖÓ�Ð�Ñ×Ï���¬Ò�Ø� � ÁÒØ��×Ô�Ô�ÖÛ��Ò�ÐÝÞ�ÐÓ�Ð×��Ö���ÙÖ�×Ø�×�ÓÖØ�� ×�ÓÛØ��ØÐÓ�Ð×��Ö�Û�Ø�×Û�Ô×��×�ÐÓ�Ð�ØÝ��ÔÓ � ×�ÑÙÐØ�Ò�ÓÙ×ÐÝØ��ÒØ��ÐÓ�Ð�ØÝ��ÔÓ�Ø�� ..."
Abstract

Cited by 234 (10 self)
 Add to MetaCart
ÔÖÓ��ÙÖ�ØÓØ���ÐÓ��ÐÓÔØ�ÑÙÑ�ÓÖ�Ñ����ÒÛ � Ö�Ø�ÓÓ��ÐÓ�ÐÐÝÓÔØ�ÑÙÑ×ÓÐÙØ�ÓÒÓ�Ø��Ò��Ù×�Ò�Ø�� × ÐÓ�Ð�ØÝ��ÔÓ��ÐÓ�Ð×��Ö�ÔÖÓ��ÙÖ��×Ø��Ñ�Ü�ÑÙÑ �Ñ����Ò�Ò����Ð�ØÝÐÓ�Ø�ÓÒÔÖÓ�Ð�Ñ×Ï���¬Ò�Ø� � ÁÒØ��×Ô�Ô�ÖÛ��Ò�ÐÝÞ�ÐÓ�Ð×��Ö���ÙÖ�×Ø�×�ÓÖØ�� ×�ÓÛØ��ØÐÓ�Ð×��Ö�Û�Ø�×Û�Ô×��×�ÐÓ�Ð�ØÝ��ÔÓ � ×�ÑÙÐØ�Ò�ÓÙ×ÐÝØ��ÒØ��ÐÓ�Ð�ØÝ��ÔÓ�Ø��ÐÓ�Ð×��Ö � �Ü�ØÐÝ�Ï��ÒÛ�Ô�ÖÑ�ØÔ���Ð�Ø��×ØÓ��×Û�ÔÔ�� �ÑÔÖÓÚ�×Ø��ÔÖ�Ú�ÓÙ×�ÒÓÛÒ��ÔÔÖÓÜ�Ñ�Ø�ÓÒ�ÓÖØ�� × ÔÖÓ�Ð�Ñ�ÓÖÍÒ�Ô��Ø�Ø�����Ð�ØÝÐÓ�Ø�ÓÒÛ�×�ÓÛ ÔÖÓ��ÙÖ��×�Ü�ØÐÝ Ó�ÐÓ�Ð×��Ö��ÓÖ�Ñ����ÒØ��ØÔÖÓÚ���×��ÓÙÒ�� � Ô�Ö�ÓÖÑ�Ò��Ù�Ö�ÒØ��Û�Ø�ÓÒÐÝ�Ñ����Ò×Ì��×�Ð×Ó �ÔÌ��×�×Ø��¬Ö×Ø�Ò�ÐÝ×�× ×Û�ÔÔ�Ò�����Ð�ØÝ��×�ÐÓ�Ð�ØÝ��ÔÓ��Ü�ØÐÝÌ�� × �ÑÔÖÓÚ�×Ø����ÓÙÒ�Ó�ÃÓÖÙÔÓÐÙ�Ø�ÐÏ��Ð×ÓÓÒ ×���Ö��Ô��Ø�Ø�����Ð�ØÝÐÓ�Ø�ÓÒÔÖÓ�Ð�ÑÛ��Ö��� � Ø��ØÐÓ�Ð×��Ö�Û���Ô�ÖÑ�Ø×����Ò��ÖÓÔÔ�Ò��Ò� Ø�ÔÐ�ÓÔ��×Ó�����Ð�ØÝ�ÓÖØ��×ÔÖÓ�Ð�ÑÛ��ÒØÖÓ�Ù � ���Ð�ØÝ��×��Ô��ØÝ�Ò�Û��Ö��ÐÐÓÛ��ØÓÓÔ�ÒÑÙÐ ÐÓ�Ð×��Ö�Û���Ô�ÖÑ�Ø×Ø��×Ò�ÛÓÔ�Ö�Ø�ÓÒ��×�ÐÓ ���Ð�ØÝ�Ò��ÖÓÔ×Þ�ÖÓÓÖÑÓÖ����Ð�Ø��×Ï�ÔÖÓÚ�Ø��Ø �Ò�ÛÓÔ�Ö�Ø�ÓÒÛ���ÓÔ�Ò×ÓÒ�ÓÖÑÓÖ�ÓÔ��×Ó� � �Ð�ØÝ��Ô��ØÛ��Ò�Ò�� ÝÈ�ÖØ��ÐÐÝ×ÙÔÔÓÖØ���Ý���ÐÐÓÛ×��Ô�ÖÓÑÁÒ�Ó×Ý×Ì� � Ê�×��Ö�Ä� � ÒÓÐÓ���×ÄØ���Ò��ÐÓÖ � ÞËÙÔÔÓÖØ���Ý�ÊÇ������� � £È�ÖØ��ÐÐÝ×ÙÔÔÓÖØ���Ý���ÐÐÓÛ×��Ô�ÖÓÑÁ�ÅÁÒ���
A constantfactor approximation algorithm for the kmedian problem
 In Proceedings of the 31st Annual ACM Symposium on Theory of Computing
, 1999
"... We present the first constantfactor approximation algorithm for the metric kmedian problem. The kmedian problem is one of the most wellstudied clustering problems, i.e., those problems in which the aim is to partition a given set of points into clusters so that the points within a cluster are re ..."
Abstract

Cited by 215 (14 self)
 Add to MetaCart
We present the first constantfactor approximation algorithm for the metric kmedian problem. The kmedian problem is one of the most wellstudied clustering problems, i.e., those problems in which the aim is to partition a given set of points into clusters so that the points within a cluster are relatively close with respect to some measure. For the metric kmedian problem, we are given n points in a metric space. We select k of these to be cluster centers, and then assign each point to its closest selected center. If point j is assigned to a center i, the cost incurred is proportional to the distance between i and j. The goal is to select the k centers that minimize the sum of the assignment costs. We give a 6 2 3approximation algorithm for this problem. This improves upon the best previously known result of O(log k log log k), which was obtained by refining and derandomizing a randomized O(log n log log n)approximation algorithm of Bartal. 1
Improved Combinatorial Algorithms for the Facility Location and kMedian Problems
 In Proceedings of the 40th Annual IEEE Symposium on Foundations of Computer Science
, 1999
"... We present improved combinatorial approximation algorithms for the uncapacitated facility location and kmedian problems. Two central ideas in most of our results are cost scaling and greedy improvement. We present a simple greedy local search algorithm which achieves an approximation ratio of 2:414 ..."
Abstract

Cited by 209 (14 self)
 Add to MetaCart
We present improved combinatorial approximation algorithms for the uncapacitated facility location and kmedian problems. Two central ideas in most of our results are cost scaling and greedy improvement. We present a simple greedy local search algorithm which achieves an approximation ratio of 2:414 + in ~ O(n 2 =) time. This also yields a bicriteria approximation tradeoff of (1 +; 1+ 2=) for facility cost versus service cost which is better than previously known tradeoffs and close to the best possible. Combining greedy improvement and cost scaling with a recent primal dual algorithm for facility location due to Jain and Vazirani, we get an approximation ratio of 1.853 in ~ O(n 3 ) time. This is already very close to the approximation guarantee of the best known algorithm which is LPbased. Further, combined with the best known LPbased algorithm for facility location, we get a very slight improvement in the approximation factor for facility location, achieving 1.728....
Greedy strikes back: Improved facility location algorithms
 Journal of Algorithms
, 1999
"... A fundamental facility location problem is to choose the location of facilities, such as industrial plants and warehouses, to minimize the cost of satisfying the demand for some commodity. There are associated costs for locating the facilities, as well as transportation costs for distributing the co ..."
Abstract

Cited by 182 (12 self)
 Add to MetaCart
A fundamental facility location problem is to choose the location of facilities, such as industrial plants and warehouses, to minimize the cost of satisfying the demand for some commodity. There are associated costs for locating the facilities, as well as transportation costs for distributing the commodities. We assume that the transportation costs form a metric. This problem is commonly referred to as the uncapacitated facility location (UFL) problem. Applications to bank account location and clustering, as well as many related pieces of work, are discussed by Cornuejols, Nemhauser and Wolsey [2]. Recently, the first constant factor approximation algorithm for this problem was obtained by Shmoys, Tardos and Aardal [16]. We show that a simple greedy heuristic combined with the algorithm by Shmoys, Tardos and Aardal, can be used to obtain an approximation guarantee of 2.408. We discuss a few variants of the problem, demonstrating better approximation factors for restricted versions of the problem. We also show that the problem is Max SNPhard. However, the inapproximability constants derived from the Max SNP hardness are very close to one. By relating this problem to Set Cover, we prove a lower bound of 1.463 on the best possible approximation ratio assuming NP / ∈ DT IME[n O(log log n)]. 1
A new greedy approach for facility location problems
"... We present a simple and natural greedy algorithm for the metric uncapacitated facility location problem achieving an approximation guarantee of 1.61 whereas the best previously known was 1.73. Furthermore, we will show that our algorithm has a property which allows us to apply the technique of Lagra ..."
Abstract

Cited by 116 (9 self)
 Add to MetaCart
We present a simple and natural greedy algorithm for the metric uncapacitated facility location problem achieving an approximation guarantee of 1.61 whereas the best previously known was 1.73. Furthermore, we will show that our algorithm has a property which allows us to apply the technique of Lagrangian relaxation. Using this property, we can nd better approximation algorithms for many variants of the facility location problem, such as the capacitated facility location problem with soft capacities and a common generalization of the kmedian and facility location problem. We will also prove a lower bound on the approximability of the kmedian problem.
Improved Approximation Algorithms for Metric Facility Location Problems
 In Proceedings of the 5th International Workshop on Approximation Algorithms for Combinatorial Optimization
, 2002
"... In this paper we present a 1.52approximation algorithm for the metric uncapacitated facility location problem, and a 2approximation algorithm for the metric capacitated facility location problem with soft capacities. Both these algorithms improve the best previously known approximation factor for ..."
Abstract

Cited by 112 (11 self)
 Add to MetaCart
In this paper we present a 1.52approximation algorithm for the metric uncapacitated facility location problem, and a 2approximation algorithm for the metric capacitated facility location problem with soft capacities. Both these algorithms improve the best previously known approximation factor for the corresponding problem, and our softcapacitated facility location algorithm achieves the integrality gap of the standard LP relaxation of the problem. Furthermore, we will show, using a result of Thorup, that our algorithms can be implemented in quasilinear time.
Extracting Schema from Semistructured Data
, 1998
"... Semistructured data is characterized by the lack of any fixed and rigid schema, although typically the data has some implicit structure. While the lack of fixed schema makes extracting semistructured data fairly easy and an attractive goal, presenting and querying such data is greatly impaired. Thus ..."
Abstract

Cited by 112 (5 self)
 Add to MetaCart
Semistructured data is characterized by the lack of any fixed and rigid schema, although typically the data has some implicit structure. While the lack of fixed schema makes extracting semistructured data fairly easy and an attractive goal, presenting and querying such data is greatly impaired. Thus, a critical problem is the discovery of the structure implicit in semistructured data and, subsequently, the recasting of the raw data in terms of this structure. In this paper, we consider a very general form of semistructured data based on labeled, directed graphs. We show that such data can be typed using the greatest fixpoint semantics of monadic datalog programs. We present an algorithm for approximate typing of semistructured data. We establish that the general problem of finding an optimal such typing is NPhard, but present some heuristics and techniques based on clustering that allow efficient and nearoptimal treatment of the problem. We also present some preliminary experimental results.