Results 1  10
of
88
A fast and high quality multilevel scheme for partitioning irregular graphs
 SIAM JOURNAL ON SCIENTIFIC COMPUTING
, 1998
"... Recently, a number of researchers have investigated a class of graph partitioning algorithms that reduce the size of the graph by collapsing vertices and edges, partition the smaller graph, and then uncoarsen it to construct a partition for the original graph [Bui and Jones, Proc. ..."
Abstract

Cited by 797 (12 self)
 Add to MetaCart
Recently, a number of researchers have investigated a class of graph partitioning algorithms that reduce the size of the graph by collapsing vertices and edges, partition the smaller graph, and then uncoarsen it to construct a partition for the original graph [Bui and Jones, Proc.
Polynomial Time Approximation Schemes for Dense Instances of NPHard Problems
, 1995
"... We present a unified framework for designing polynomial time approximation schemes (PTASs) for "dense" instances of many NPhard optimization problems, including maximum cut, graph bisection, graph separation, minimum kway cut with and without specified terminals, and maximum 3satisfiability. By d ..."
Abstract

Cited by 174 (28 self)
 Add to MetaCart
We present a unified framework for designing polynomial time approximation schemes (PTASs) for "dense" instances of many NPhard optimization problems, including maximum cut, graph bisection, graph separation, minimum kway cut with and without specified terminals, and maximum 3satisfiability. By dense graphs we mean graphs with minimum degree Ω(n), although our algorithms solve most of these problems so long as the average degree is Ω(n). Denseness for nongraph problems is defined similarly. The unified framework begins with the idea of exhaustive sampling: picking a small random set of vertices, guessing where they go on the optimum solution, and then using their placement to determine the placement of everything else. The approach then develops into a PTAS for approximating certain smooth integer programs where the objective function and the constraints are "dense" polynomials of constant degree.
The ISPD98 Circuit Benchmark Suite
 Proc. ACM/IEEE Int’l Symp. Physical Design (ISPD 99), ACM
, 1998
"... From 19851993, the MCNC regularly introduced and maintained circuit benchmarks for use by the Design Automation community. However, during the last five years, no new circuits have been introduced that can be used for developing fundamental physical design applications, such as partitioning and pla ..."
Abstract

Cited by 126 (1 self)
 Add to MetaCart
From 19851993, the MCNC regularly introduced and maintained circuit benchmarks for use by the Design Automation community. However, during the last five years, no new circuits have been introduced that can be used for developing fundamental physical design applications, such as partitioning and placement. The largest circuit in the existing set of benchmark suites has over 100,000 modules, but the second largest has just over 25,000 modules, which is small by today’s standards. This paper introduces the ISPD98 benchmark suite which consists of 18 circuits with sizes ranging from 13,000 to 210,000 modules. Experimental results for three existing partitioners are presented so that future researchers in partitioning can more easily evaluate their heuristics. 1
METIS  Unstructured Graph Partitioning and Sparse Matrix Ordering System, Version 2.0
, 1995
"... this paper is organized as follows: Section 2 briefly describes the various ideas and algorithms implemented in METIS. Section 3 describes the user interface to the METIS graph partitioning and sparse matrix ordering packages. Sections 4 and 5 describe the formats of the input and output files used ..."
Abstract

Cited by 122 (5 self)
 Add to MetaCart
this paper is organized as follows: Section 2 briefly describes the various ideas and algorithms implemented in METIS. Section 3 describes the user interface to the METIS graph partitioning and sparse matrix ordering packages. Sections 4 and 5 describe the formats of the input and output files used by METIS. Section 6 describes the standalone library that implements the various algorithms implemented in METIS. Section 7 describes the system requirements for the METIS package. Appendix A describes and compares various graph partitioning algorithms that are extensively used.
Spectral Partitioning of Random Graphs
, 2001
"... Problems such as bisection, graph coloring, and clique are generally believed hard in the worst case. However, they can be solved if the input data is drawn randomly from a distribution over graphs containing acceptable solutions. In this paper we show that a simple spectral algorithm can solve all ..."
Abstract

Cited by 87 (3 self)
 Add to MetaCart
Problems such as bisection, graph coloring, and clique are generally believed hard in the worst case. However, they can be solved if the input data is drawn randomly from a distribution over graphs containing acceptable solutions. In this paper we show that a simple spectral algorithm can solve all three problems above in the average case, as well as a more general problem of partitioning graphs based on edge density. In nearly all cases our approach meets or exceeds previous parameters, while introducing substantial generality. We apply spectral techniques, using foremost the observation that in all of these problems, the expected adjacency matrix is a low rank matrix wherein the structure of the solution is evident.
A Polylogarithmic Approximation of the Minimum Bisection
, 2001
"... A bisection of a graph with n vertices is a partition of its vertices into two sets, each of size n=2. The bisection cost is the number of edges connecting the two sets. ..."
Abstract

Cited by 72 (7 self)
 Add to MetaCart
A bisection of a graph with n vertices is a partition of its vertices into two sets, each of size n=2. The bisection cost is the number of edges connecting the two sets.
PARTITIONINGBASED STANDARDCELL GLOBAL PLACEMENT WITH AN EXACT OBJECTIVE
"... We present a new topdown quadrisectionbased global placer for standardcell layout. The key contribution is a new general gain update scheme for partitioning that can exactly capture detailed placement objectives on a pernet basis. We use this gain update scheme, along with an efficient multileve ..."
Abstract

Cited by 50 (7 self)
 Add to MetaCart
We present a new topdown quadrisectionbased global placer for standardcell layout. The key contribution is a new general gain update scheme for partitioning that can exactly capture detailed placement objectives on a pernet basis. We use this gain update scheme, along with an efficient multilevel partitioner, as the basis for a new quadrisectionbased placer called QUAD. Even though QUAD is a global placer, it can achieve significant improvements in wirelength and congestion distribution over GORDIANL/DOMINO [SDJ91] [DJS94] (a leading quadratic placer with linear wirelength objective and detailed placement improvement). QUAD can be easily extended to capture various practical considerations; our timingdriven placement can obtain wirelength savings (as well as small cycle time improvements) versus the SPEED [RE95].