Results 1  10
of
943
Constraint Logic Programming: A Survey
"... Constraint Logic Programming (CLP) is a merger of two declarative paradigms: constraint solving and logic programming. Although a relatively new field, CLP has progressed in several quite different directions. In particular, the early fundamental concepts have been adapted to better serve in differe ..."
Abstract

Cited by 864 (25 self)
 Add to MetaCart
Constraint Logic Programming (CLP) is a merger of two declarative paradigms: constraint solving and logic programming. Although a relatively new field, CLP has progressed in several quite different directions. In particular, the early fundamental concepts have been adapted to better serve in different areas of applications. In this survey of CLP, a primary goal is to give a systematic description of the major trends in terms of common fundamental concepts. The three main parts cover the theory, implementation issues, and programming for applications.
GSAT and Dynamic Backtracking
 Journal of Artificial Intelligence Research
, 1994
"... There has been substantial recent interest in two new families of search techniques. One family consists of nonsystematic methods such as gsat; the other contains systematic approaches that use a polynomial amount of justification information to prune the search space. This paper introduces a new te ..."
Abstract

Cited by 389 (15 self)
 Add to MetaCart
There has been substantial recent interest in two new families of search techniques. One family consists of nonsystematic methods such as gsat; the other contains systematic approaches that use a polynomial amount of justification information to prune the search space. This paper introduces a new technique that combines these two approaches. The algorithm allows substantial freedom of movement in the search space but enough information is retained to ensure the systematicity of the resulting analysis. Bounds are given for the size of the justification database and conditions are presented that guarantee that this database will be polynomial in the size of the problem in question. 1 INTRODUCTION The past few years have seen rapid progress in the development of algorithms for solving constraintsatisfaction problems, or csps. Csps arise naturally in subfields of AI from planning to vision, and examples include propositional theorem proving, map coloring and scheduling problems. The probl...
Constraint Programming
, 1995
"... Constraint programming is a paradigm that is tailored to hard search problems. To date the main application areas are those of planning, scheduling, timetabling, routing, placement, investment, configuration, design and insurance. ..."
Abstract

Cited by 318 (9 self)
 Add to MetaCart
Constraint programming is a paradigm that is tailored to hard search problems. To date the main application areas are those of planning, scheduling, timetabling, routing, placement, investment, configuration, design and insurance.
Algorithms for Distributed Constraint Satisfaction: A Review
 In CP
, 2000
"... . When multiple agents are in a shared environment, there usually exist constraints among the possible actions of these agents. A distributed constraint satisfaction problem (distributed CSP) is a problem to find a consistent combination of actions that satisfies these interagent constraints. Vario ..."
Abstract

Cited by 248 (11 self)
 Add to MetaCart
(Show Context)
. When multiple agents are in a shared environment, there usually exist constraints among the possible actions of these agents. A distributed constraint satisfaction problem (distributed CSP) is a problem to find a consistent combination of actions that satisfies these interagent constraints. Various application problems in multiagent systems can be formalized as distributed CSPs. This paper gives an overview of the existing research on distributed CSPs. First, we briefly describe the problem formalization and algorithms of normal, centralized CSPs. Then, we show the problem formalization and several MAS application problems of distributed CSPs. Furthermore, we describe a series of algorithms for solving distributed CSPs, i.e., the asynchronous backtracking, the asynchronous weakcommitment search, the distributed breakout, and distributed consistency algorithms. Finally,we showtwo extensions of the basic problem formalization of distributed CSPs, i.e., handling multiple local variables, and dealing with overconstrained problems. Keywords: Constraint Satisfaction, Search, distributed AI 1.
Contradicting Conventional Wisdom in Constraint Satisfaction
, 1994
"... . Constraint satisfaction problems have wide application in artificial intelligence. They involve finding values for problem variables where the values must be consistent in that they satisfy restrictions on which combinations of values are allowed. Two standard techniques used in solving such p ..."
Abstract

Cited by 232 (12 self)
 Add to MetaCart
(Show Context)
. Constraint satisfaction problems have wide application in artificial intelligence. They involve finding values for problem variables where the values must be consistent in that they satisfy restrictions on which combinations of values are allowed. Two standard techniques used in solving such problems are backtrack search and consistency inference. Conventional wisdom in the constraint satisfaction community suggests: 1) using consistency inference as preprocessing before search to prune values from consideration reduces subsequent search effort and 2) using consistency inference during search to prune values from consideration is best done at the limited level embodied in the forward checking algorithm. We present evidence contradicting both pieces of conventional wisdom, and suggesting renewed consideration of an approach which fully maintains arc consistency during backtrack search. 1 Introduction Constraint satisfaction problems (CSPs) involve finding values for prob...
Automated analysis of feature models 20 years later: A literature review
 INFORMATION SYSTEMS
, 2010
"... Software product line engineering is about producing a set of related products that share more commonalities than variabilities. Feature models are widely used for variability and commonality management in software product lines. Feature models are information models where a set of products are repr ..."
Abstract

Cited by 184 (20 self)
 Add to MetaCart
(Show Context)
Software product line engineering is about producing a set of related products that share more commonalities than variabilities. Feature models are widely used for variability and commonality management in software product lines. Feature models are information models where a set of products are represented as a set of features in a single model. The automated analysis of feature models deals with the computer–aided extraction of information from feature models. The literature on this topic has contributed with a set of operations, techniques, tools and empirical results which have not been surveyed until now. This paper provides a comprehensive literature review on the automated analysis of feature models 20 years after of their invention. This paper contributes by bringing together previouslydisparate streams of work to help shed light on this thriving area. We also present a conceptual framework to understand the different proposals as well as categorise future contributions. We finally discuss the different studies and propose some challenges to be faced in the future.
Automated Reasoning on Feature Models
 LNCS, ADVANCED INFORMATION SYSTEMS ENGINEERING: 17TH INTERNATIONAL CONFERENCE, CAISE 2005
, 2005
"... Software Product Line (SPL) Engineering has proved to be an effective method for software production. However, in the SPL community it is well recognized that variability in SPLs is increasing by the thousands. Hence, an automatic support is needed to deal with variability in SPL. Most of the cur ..."
Abstract

Cited by 171 (27 self)
 Add to MetaCart
(Show Context)
Software Product Line (SPL) Engineering has proved to be an effective method for software production. However, in the SPL community it is well recognized that variability in SPLs is increasing by the thousands. Hence, an automatic support is needed to deal with variability in SPL. Most of the current proposals for automatic reasoning on SPL are not devised to cope with extrafunctional features. In this paper we introduce a proposal to model and reason on an SPL using constraint programming. We take into account functional and extrafunctional features, improve current proposals and present a running, yet feasible implementation.
ConjunctiveQuery Containment and Constraint Satisfaction
 Journal of Computer and System Sciences
, 1998
"... Conjunctivequery containment is recognized as a fundamental problem in database query evaluation and optimization. At the same time, constraint satisfaction is recognized as a fundamental problem in artificial intelligence. What do conjunctivequery containment and constraint satisfaction have in c ..."
Abstract

Cited by 168 (14 self)
 Add to MetaCart
Conjunctivequery containment is recognized as a fundamental problem in database query evaluation and optimization. At the same time, constraint satisfaction is recognized as a fundamental problem in artificial intelligence. What do conjunctivequery containment and constraint satisfaction have in common? Our main conceptual contribution in this paper is to point out that, despite their very different formulation, conjunctivequery containment and constraint satisfaction are essentially the same problem. The reason is that they can be recast as the following fundamental algebraic problem: given two finite relational structures A and B, is there a homomorphism h : A ! B? As formulated above, the homomorphism problem is uniform in the sense that both relational structures A and B are part of the input. By fixing the structure B, one obtains the following nonuniform problem: given a finite relational structure A, is there a homomorphism h : A ! B? In general, nonuniform tractability results do not uniformize. Thus, it is natural to ask: which tractable cases of nonuniform tractability results for constraint satisfaction and conjunctivequery containment do uniformize? Our main technical contribution in this paper is to show that several cases of tractable nonuniform constraint satisfaction problems do indeed uniformize. We exhibit three nonuniform tractability results that uniformize and, thus, give rise to polynomialtime solvable cases of constraint satisfaction and conjunctivequery containment.
Algebraic structures in combinatorial problems
 TECHNICAL REPORT, TECHNISCHE UNIVERSITAT DRESDEN
, 2001
"... ..."
Locating the Phase Transition in Binary Constraint Satisfaction Problems
 Artificial Intelligence
, 1994
"... The phase transition in binary constraint satisfaction problems, i.e. the transition from a region in which almost all problems have many solutions to a region in which almost all problems have no solutions, as the constraints become tighter, is investigated by examining the behaviour of samples of ..."
Abstract

Cited by 134 (4 self)
 Add to MetaCart
(Show Context)
The phase transition in binary constraint satisfaction problems, i.e. the transition from a region in which almost all problems have many solutions to a region in which almost all problems have no solutions, as the constraints become tighter, is investigated by examining the behaviour of samples of randomlygenerated problems. In contrast to theoretical work, which is concerned with the asymptotic behaviour of problems as the number of variables becomes larger, this paper is concerned with the location of the phase transition in finite problems. The accuracy of a prediction based on the expected number of solutions is discussed; it is shown that the variance of the number of solutions can be used to set bounds on the phase transition and to indicate the accuracy of the prediction. A class of sparse problems, for which the prediction is known to be inaccurate, is considered in detail; it is shown that, for these problems, the phase transition depends on the topology of the constraint gr...