Results 1  10
of
12
Random number generation
"... Random numbers are the nuts and bolts of simulation. Typically, all the randomness required by the model is simulated by a random number generator whose output is assumed to be a sequence of independent and identically distributed (IID) U(0, 1) random variables (i.e., continuous random variables dis ..."
Abstract

Cited by 136 (30 self)
 Add to MetaCart
Random numbers are the nuts and bolts of simulation. Typically, all the randomness required by the model is simulated by a random number generator whose output is assumed to be a sequence of independent and identically distributed (IID) U(0, 1) random variables (i.e., continuous random variables distributed uniformly over the interval
On the Periods of Generalized Fibonacci Recurrences
, 1992
"... We give a simple condition for a linear recurrence (mod 2 w ) of degree r to have the maximal possible period 2 w 1 (2 r 1). It follows that the period is maximal in the cases of interest for pseudorandom number generation, i.e. for 3term linear recurrences dened by trinomials which are prim ..."
Abstract

Cited by 28 (10 self)
 Add to MetaCart
We give a simple condition for a linear recurrence (mod 2 w ) of degree r to have the maximal possible period 2 w 1 (2 r 1). It follows that the period is maximal in the cases of interest for pseudorandom number generation, i.e. for 3term linear recurrences dened by trinomials which are primitive (mod 2) and of degree r > 2. We consider the enumeration of certain exceptional polynomials which do not give maximal period, and list all such polynomials of degree less than 15. 1.
Uniform Random Number Generators for Supercomputers
 Proc. Fifth Australian Supercomputer Conference
, 1992
"... We consider the requirements for uniform pseudorandom number generators on modern vector and parallel supercomputers, consider the pros and cons of various classes of methods, and outline what is currently available. We propose a class of random number generators which have good statistical propert ..."
Abstract

Cited by 26 (11 self)
 Add to MetaCart
We consider the requirements for uniform pseudorandom number generators on modern vector and parallel supercomputers, consider the pros and cons of various classes of methods, and outline what is currently available. We propose a class of random number generators which have good statistical properties and can be implemented efficiently on vector processors and parallel machines. A good method for initialization of these generators is described, and an implementation on a Fujitsu VP 2200/10 vector processor is discussed. 1
A fast algorithm for testing reducibility of trinomials mod 2 and some new primitive trinomials of degree 3021377
 Math. Comp
, 2003
"... Abstract. The standard algorithm for testing reducibility of a trinomial of prime degree r over GF(2) requires 2r + O(1) bits of memory. We describe a new algorithm which requires only 3r/2+O(1) bits of memory and significantly fewer memory references and bitoperations than the standard algorithm. ..."
Abstract

Cited by 20 (14 self)
 Add to MetaCart
Abstract. The standard algorithm for testing reducibility of a trinomial of prime degree r over GF(2) requires 2r + O(1) bits of memory. We describe a new algorithm which requires only 3r/2+O(1) bits of memory and significantly fewer memory references and bitoperations than the standard algorithm. If 2 r − 1 is a Mersenne prime, then an irreducible trinomial of degree r is necessarily primitive. We give primitive trinomials for the Mersenne exponents r = 756839, 859433, and 3021377. The results for r = 859433 extend and correct some computations of Kumada et al. The two results for r = 3021377 are primitive trinomials of the highest known degree. 1.
Algorithms for Finding Almost Irreducible and Almost Primitive Trinomials
 in Primes and Misdemeanours: Lectures in Honour of the Sixtieth Birthday of Hugh Cowie Williams, Fields Institute
, 2003
"... Consider polynomials over GF(2). We describe ecient algorithms for nding trinomials with large irreducible (and possibly primitive) factors, and give examples of trinomials having a primitive factor of degree r for all Mersenne exponents r = 3 mod 8 in the range 5 < r < 10 , although there i ..."
Abstract

Cited by 17 (6 self)
 Add to MetaCart
Consider polynomials over GF(2). We describe ecient algorithms for nding trinomials with large irreducible (and possibly primitive) factors, and give examples of trinomials having a primitive factor of degree r for all Mersenne exponents r = 3 mod 8 in the range 5 < r < 10 , although there is no irreducible trinomial of degree r.
Random Number Generators with Period Divisible by a Mersenne Prime
 Proc. ICCSA 2003
, 2003
"... Pseudorandom numbers with long periods and good statistical properties are often required for applications in computational finance. We consider the requirements for good uniform random number generators, and describe a class of generators whose period is a Mersenne prime or a small multiple of ..."
Abstract

Cited by 14 (5 self)
 Add to MetaCart
Pseudorandom numbers with long periods and good statistical properties are often required for applications in computational finance. We consider the requirements for good uniform random number generators, and describe a class of generators whose period is a Mersenne prime or a small multiple of a Mersenne prime. These generators are based on "almost primitive" trinomials, that is trinomials having a large primitive factor. They enable very fast vector/parallel implementations with excellent statistical properties.
A fast algorithm for testing irreducibility of trinomials mod 2
 pub199.html
, 2000
"... The standard algorithm for testing reducibility of a trinomial of prime degree r over GF(2) requires 2r+O(1) bits of memory and Θ(r 2) bitoperations. We describe an algorithm which requires only 3r/2 + O(1) bits of memory and significantly fewer bitoperations than the standard algorithm. Using the ..."
Abstract

Cited by 9 (7 self)
 Add to MetaCart
The standard algorithm for testing reducibility of a trinomial of prime degree r over GF(2) requires 2r+O(1) bits of memory and Θ(r 2) bitoperations. We describe an algorithm which requires only 3r/2 + O(1) bits of memory and significantly fewer bitoperations than the standard algorithm. Using the algorithm, we have found 18 new irreducible trinomials of degree r in the range 100151 ≤ r ≤ 700057. If r is a Mersenne exponent (i.e. 2 r −1 is a Mersenne prime), then an irreducible trinomial is primitive. Primitive trinomials are of interest because they can be used to give pseudorandom number generators with period at least 2 r − 1. We give examples of primitive trinomials for r = 756839, 859433, and 3021377. The three results for r = 756839 are new. The results for r = 859433 extend and correct some computations of Kumada et al. [Math. Comp. 69 (2000), 811–814]. The two results for r = 3021377 are primitive trinomials of the highest known degree. 1 Copyright c○2000, the authors. rpb199tr typeset using L ATEX 1 1
Fast and reliable random number generators for scientific computing, Lecture
 Proc. PARA'04 Workshop on the StateoftheArt inScientific Computing
"... Abstract. Fast and reliable pseudorandom number generators are required for simulation and other applications in Scientific Computing. We outline the requirements for good uniform random number generators, and describe a class of generators having very fast vector/parallel implementations with exce ..."
Abstract

Cited by 6 (2 self)
 Add to MetaCart
Abstract. Fast and reliable pseudorandom number generators are required for simulation and other applications in Scientific Computing. We outline the requirements for good uniform random number generators, and describe a class of generators having very fast vector/parallel implementations with excellent statistical properties. We also discuss the problem of initialising random number generators, and consider how to combine two or more generators to give a better (though usually slower) generator. 1
Almost Irreducible and Almost Primitive Trinomials
 in Primes and Misdemeanours: Lectures in Honour of the Sixtieth Birthday of Hugh Cowie Williams, Fields Institute
, 2003
"... Consider polynomials over GF(2). We de ne almost irreducible and almost primitive polynomials, explain why they are useful, and give some examples and conjectures relating to them. 2 ..."
Abstract

Cited by 3 (2 self)
 Add to MetaCart
Consider polynomials over GF(2). We de ne almost irreducible and almost primitive polynomials, explain why they are useful, and give some examples and conjectures relating to them. 2
TEN NEW PRIMITIVE BINARY TRINOMIALS
, 2008
"... search for the currently known Mersenne prime exponents. Primitive trinomials of degree up to 6 972 593 were previously known [4]. We have completed a search for all known Mersenne prime exponents [7]. Ten new primitive trinomials were found. Our results are summarized in the following theorem: Theo ..."
Abstract

Cited by 3 (3 self)
 Add to MetaCart
search for the currently known Mersenne prime exponents. Primitive trinomials of degree up to 6 972 593 were previously known [4]. We have completed a search for all known Mersenne prime exponents [7]. Ten new primitive trinomials were found. Our results are summarized in the following theorem: Theorem 1. For the integers r listed in Table 1, the primitive trinomials x r +x s +1 of degree r over GF(2) are exactly those given in Table 1, and the corresponding reciprocal trinomials x r + x r−s +1. Proof. From the GIMPS Project [7], the integers r listed in Table 1 are exponents of Mersenne primes 2 r − 1. Thus, irreducible trinomials of degree r are necessarily primitive. Irreducibility of the trinomials listed in Table 1 follows from the authors’ computations, using the new algorithm described in [5, 6] (verified using the algorithm of [3] and independently verified by Allan Steel using Magma). Finally, the fact that no irreducible trinomials were missed during the search, for those degrees r, follows from the certificates given on the authors ’ web pages [1]. □ Remarks. The integers r listed in Table 1 are the known Mersenne exponents of