Results 1  10
of
19
A completeness theorem for Kleene algebras and the algebra of regular events
 Information and Computation
, 1994
"... We givea nitary axiomatization of the algebra of regular events involving only equations and equational implications. Unlike Salomaa's axiomatizations, the axiomatization given here is sound for all interpretations over Kleene algebras. 1 ..."
Abstract

Cited by 188 (23 self)
 Add to MetaCart
We givea nitary axiomatization of the algebra of regular events involving only equations and equational implications. Unlike Salomaa's axiomatizations, the axiomatization given here is sound for all interpretations over Kleene algebras. 1
Kleene algebra with tests
 Transactions on Programming Languages and Systems
, 1997
"... Abstract. We investigate conditions under which a given Kleene algebra with tests is isomorphic to an algebra of binary relations. Two simple separation properties are identified that, along with starcontinuity, are sufficient for nonstandard relational representation. An algebraic condition is ide ..."
Abstract

Cited by 108 (23 self)
 Add to MetaCart
Abstract. We investigate conditions under which a given Kleene algebra with tests is isomorphic to an algebra of binary relations. Two simple separation properties are identified that, along with starcontinuity, are sufficient for nonstandard relational representation. An algebraic condition is identified that is necessary and sufficient for the construction to produce a standard representation. 1
On Kleene Algebras and Closed Semirings
 of Lect. Notes in Comput. Sci
, 1990
"... Kleene algebras are an important class of algebraic structures that arise in diverse areas of computer science: program logic and semantics, relational algebra, automata theory, and the design and analysis of algorithms. The literature contains several inequivalent definitions of Kleene algebras and ..."
Abstract

Cited by 42 (7 self)
 Add to MetaCart
Kleene algebras are an important class of algebraic structures that arise in diverse areas of computer science: program logic and semantics, relational algebra, automata theory, and the design and analysis of algorithms. The literature contains several inequivalent definitions of Kleene algebras and related algebraic structures [2, 14, 15, 5, 6, 1, 10, 7]. In this paper we establish some new relationships among these structures. Our main results are: ffl There is a Kleene algebra in the sense of [6] that is not *continuous. ffl The categories of *continuous Kleene algebras [5, 6], closed semirings [1, 10] and Salgebras [2] are strongly related by adjunctions. ffl The axioms of Kleene algebra in the sense of [6] are not complete for the universal Horn theory of the regular events. This refutes a conjecture of Conway [2, p. 103]. ffl Righthanded Kleene algebras are not necessarily lefthanded Kleene algebras. This verifies a weaker version of a conjecture of Pratt [15]. In Rov...
Dynamic Algebras as a wellbehaved fragment of Relation Algebras
 In Algebraic Logic and Universal Algebra in Computer Science, LNCS 425
, 1990
"... The varieties RA of relation algebras and DA of dynamic algebras are similar with regard to definitional capacity, admitting essentially the same equational definitions of converse and star. They differ with regard to completeness and decidability. The RA definitions that are incomplete with respect ..."
Abstract

Cited by 35 (5 self)
 Add to MetaCart
The varieties RA of relation algebras and DA of dynamic algebras are similar with regard to definitional capacity, admitting essentially the same equational definitions of converse and star. They differ with regard to completeness and decidability. The RA definitions that are incomplete with respect to representable relation algebras, when expressed in their DA form are complete with respect to representable dynamic algebras. Moreover, whereas the theory of RA is undecidable, that of DA is decidable in exponential time. These results follow from representability of the free intensional dynamic algebras. Dept. of Computer Science, Stanford, CA 94305. This paper is based on a talk given at the conference Algebra and Computer Science, Ames, Iowa, June 24, 1988. It will appear in the proceedings of that conference, to be published by SpringerVerlag in the Lecture Notes in Computer Science series. This work was supported by the National Science Foundation under grant number CCR8814921 ...
Certification of compiler optimizations using Kleene algebra with tests
 STUCKEY (EDS.), PROC. RST INTERNAT. CONF. COMPUTATIONAL LOGIC (CL2000), LECTURE NOTES IN ARTI CIAL INTELLIGENCE
, 2000
"... We use Kleene algebra with tests to verify a wide assortment ofcommon compiler optimizations, including dead code elimination, common subexpression elimination, copy propagation, loop hoisting, induction variable elimination, instruction scheduling, algebraic simplification, loop unrolling, elimin ..."
Abstract

Cited by 32 (11 self)
 Add to MetaCart
We use Kleene algebra with tests to verify a wide assortment ofcommon compiler optimizations, including dead code elimination, common subexpression elimination, copy propagation, loop hoisting, induction variable elimination, instruction scheduling, algebraic simplification, loop unrolling, elimination of redundant instructions, array bounds check elimination, and introduction of sentinels. In each of these cases, we give a formal equational proof of the correctness of the optimizing transformation.
Temporal Structures
, 1990
"... We combine the principles of the FloydWarshallKleene algorithm, enriched categories, and Birkhoff arithmetic, to yield a useful class of algebras of transitive vertexlabeled spaces. The motivating application is a uniform theory of abstract or parametrized time in which to any given notion of tim ..."
Abstract

Cited by 30 (21 self)
 Add to MetaCart
We combine the principles of the FloydWarshallKleene algorithm, enriched categories, and Birkhoff arithmetic, to yield a useful class of algebras of transitive vertexlabeled spaces. The motivating application is a uniform theory of abstract or parametrized time in which to any given notion of time there corresponds an algebra of concurrent behaviors and their operations, always the same operations but interpreted automatically and appropriately for that notion of time. An interesting side application is a language for succinctly naming a wide range of datatypes. 1 Introduction Posets, metric spaces, "closed" automata, and categories have in common the notion of a space of points with distances between points. These distances are respectively truth values, reals, languages, and sets. Distances have two facets, logical and metrical. The logical facet is expressed respectively via implications p ! q between truth values, comparisons x y between reals, inclusions L ` M between langua...
Kleene algebra with tests: Completeness and decidability
 In Proc. of 10th International Workshop on Computer Science Logic (CSL’96
, 1996
"... Abstract. Kleene algebras with tests provide a rigorous framework for equational speci cation and veri cation. They have been used successfully in basic safety analysis, sourcetosource program transformation, and concurrency control. We prove the completeness of the equational theory of Kleene alg ..."
Abstract

Cited by 22 (11 self)
 Add to MetaCart
Abstract. Kleene algebras with tests provide a rigorous framework for equational speci cation and veri cation. They have been used successfully in basic safety analysis, sourcetosource program transformation, and concurrency control. We prove the completeness of the equational theory of Kleene algebra with tests and *continuous Kleene algebra with tests over languagetheoretic and relational models. We also show decidability. Cohen's reduction of Kleene algebra with hypotheses of the form r = 0 to Kleene algebra without hypotheses is simpli ed and extended to handle Kleene algebras with tests. 1
Rewriting Extended Regular Expressions
, 1993
"... We concider an extened algebra of regular events (languages) with intersection besides the usual operations. This algebra has the structure of a distributive lattice with monotonic operations; the latter property is crucial for some applications. We give a new complete Horn equational axiomatiztion ..."
Abstract

Cited by 19 (1 self)
 Add to MetaCart
We concider an extened algebra of regular events (languages) with intersection besides the usual operations. This algebra has the structure of a distributive lattice with monotonic operations; the latter property is crucial for some applications. We give a new complete Horn equational axiomatiztion of the algebra and develop some termrewriting techniques for constructing logical inferences of valid equations. A shorter version of this paper is to appear in the proceedings of Developments in Language Theory, Univ. of Turku, July 1993, published by World Scientific. The present version has been submitted for publication elsewhere. 1 Introduction In this paper we consider an extended algebra of regular events (languages) on a given alphabet with intersection besides the usual operations (union, concatenation, Kleene star, empty, and the regular unit). This algebra has the structure of a distributive lattice (join is union, meet is intersection) with only monotonic operations. The latte...
Dynamic Algebras: Examples, Constructions, Applications
 Studia Logica
, 1991
"... Dynamic algebras combine the classes of Boolean (B 0 0) and regular (R [ ; ) algebras into a single finitely axiomatized variety (B R 3) resembling an Rmodule with "scalar" multiplication 3. The basic result is that is reflexive transitive closure, contrary to the intuition that this con ..."
Abstract

Cited by 17 (1 self)
 Add to MetaCart
Dynamic algebras combine the classes of Boolean (B 0 0) and regular (R [ ; ) algebras into a single finitely axiomatized variety (B R 3) resembling an Rmodule with "scalar" multiplication 3. The basic result is that is reflexive transitive closure, contrary to the intuition that this concept should require quantifiers for its definition. Using this result we give several examples of dynamic algebras arising naturally in connection with additive functions, binary relations, state trajectories, languages, and flowcharts. The main result is that free dynamic algebras are residually finite (i.e. factor as a subdirect product of finite dynamic algebras), important because finite separable dynamic algebras are isomorphic to Kripke structures. Applications include a new completeness proof for the Segerberg axiomatization of propositional dynamic logic, and yet another notion of regular algebra. Key words: Dynamic algebra, logic, program verification, regular algebra. This paper or...
Typed Kleene algebra
, 1998
"... In previous work we havefound it necessary to argue that certain theorems of Kleene algebra hold even when the symbols are interpreted as nonsquare matrices. In this note we de ne and investigate typed Kleene algebra, a typed version of Kleene algebra in which objects have types s! t. Although nonsq ..."
Abstract

Cited by 16 (4 self)
 Add to MetaCart
In previous work we havefound it necessary to argue that certain theorems of Kleene algebra hold even when the symbols are interpreted as nonsquare matrices. In this note we de ne and investigate typed Kleene algebra, a typed version of Kleene algebra in which objects have types s! t. Although nonsquare matrices are the principal motivation, there are many other useful interpretations: traces, binary relations, Kleene algebra with tests. We give a set of typing rules and show that every expression has a unique most general typing (mgt). Then we prove the following metatheorem that incorporates the abovementioned results for nonsquare matrices as special cases. Call an expression 1free if it contains only the Kleene algebra operators (binary) +, (unary) +, 0, and,but no occurrence of 1 or. Then every universal 1free formula that is a theorem of Kleene algebra is also a theorem of typed Kleene algebra under its most general typing. The metatheorem is false without the restriction to 1free formulas. 1