Results 1  10
of
20
Bayes Factors
, 1995
"... In a 1935 paper, and in his book Theory of Probability, Jeffreys developed a methodology for quantifying the evidence in favor of a scientific theory. The centerpiece was a number, now called the Bayes factor, which is the posterior odds of the null hypothesis when the prior probability on the null ..."
Abstract

Cited by 983 (70 self)
 Add to MetaCart
In a 1935 paper, and in his book Theory of Probability, Jeffreys developed a methodology for quantifying the evidence in favor of a scientific theory. The centerpiece was a number, now called the Bayes factor, which is the posterior odds of the null hypothesis when the prior probability on the null is onehalf. Although there has been much discussion of Bayesian hypothesis testing in the context of criticism of P values, less attention has been given to the Bayes factor as a practical tool of applied statistics. In this paper we review and discuss the uses of Bayes factors in the context of five scientific applications in genetics, sports, ecology, sociology and psychology.
A Guide to the Literature on Learning Probabilistic Networks From Data
, 1996
"... This literature review discusses different methods under the general rubric of learning Bayesian networks from data, and includes some overlapping work on more general probabilistic networks. Connections are drawn between the statistical, neural network, and uncertainty communities, and between the ..."
Abstract

Cited by 172 (0 self)
 Add to MetaCart
This literature review discusses different methods under the general rubric of learning Bayesian networks from data, and includes some overlapping work on more general probabilistic networks. Connections are drawn between the statistical, neural network, and uncertainty communities, and between the different methodological communities, such as Bayesian, description length, and classical statistics. Basic concepts for learning and Bayesian networks are introduced and methods are then reviewed. Methods are discussed for learning parameters of a probabilistic network, for learning the structure, and for learning hidden variables. The presentation avoids formal definitions and theorems, as these are plentiful in the literature, and instead illustrates key concepts with simplified examples. Keywords Bayesian networks, graphical models, hidden variables, learning, learning structure, probabilistic networks, knowledge discovery. I. Introduction Probabilistic networks or probabilistic gra...
Approximate Bayes Factors and Accounting for Model Uncertainty in Generalized Linear Models
, 1993
"... Ways of obtaining approximate Bayes factors for generalized linear models are described, based on the Laplace method for integrals. I propose a new approximation which uses only the output of standard computer programs such as GUM; this appears to be quite accurate. A reference set of proper priors ..."
Abstract

Cited by 98 (28 self)
 Add to MetaCart
Ways of obtaining approximate Bayes factors for generalized linear models are described, based on the Laplace method for integrals. I propose a new approximation which uses only the output of standard computer programs such as GUM; this appears to be quite accurate. A reference set of proper priors is suggested, both to represent the situation where there is not much prior information, and to assess the sensitivity of the results to the prior distribution. The methods can be used when the dispersion parameter is unknown, when there is overdispersion, to compare link functions, and to compare error distributions and variance functions. The methods can be used to implement the Bayesian approach to accounting for model uncertainty. I describe an application to inference about relative risks in the presence of control factors where model uncertainty is large and important. Software to implement the
Bayes factors and model uncertainty
 DEPARTMENT OF STATISTICS, UNIVERSITY OFWASHINGTON
, 1993
"... In a 1935 paper, and in his book Theory of Probability, Jeffreys developed a methodology for quantifying the evidence in favor of a scientific theory. The centerpiece was a number, now called the Bayes factor, which is the posterior odds of the null hypothesis when the prior probability on the null ..."
Abstract

Cited by 89 (6 self)
 Add to MetaCart
In a 1935 paper, and in his book Theory of Probability, Jeffreys developed a methodology for quantifying the evidence in favor of a scientific theory. The centerpiece was a number, now called the Bayes factor, which is the posterior odds of the null hypothesis when the prior probability on the null is onehalf. Although there has been much discussion of Bayesian hypothesis testing in the context of criticism of Pvalues, less attention has been given to the Bayes factor as a practical tool of applied statistics. In this paper we review and discuss the uses of Bayes factors in the context of five scientific applications. The points we emphasize are: from Jeffreys's Bayesian point of view, the purpose of hypothesis testing is to evaluate the evidence in favor of a scientific theory; Bayes factors offer a way of evaluating evidence in favor ofa null hypothesis; Bayes factors provide a way of incorporating external information into the evaluation of evidence about a hypothesis; Bayes factors are very general, and do not require alternative models to be nested; several techniques are available for computing Bayes factors, including asymptotic approximations which are easy to compute using the output from standard packages that maximize likelihoods; in "nonstandard " statistical models that do not satisfy common regularity conditions, it can be technically simpler to calculate Bayes factors than to derive nonBayesian significance
Learning Bayesian Networks by Genetic Algorithms. A case study in the prediction of survival in malignant skin melanoma
, 1997
"... In this work we introduce a methodology based on Genetic Algorithms for the automatic induction of Bayesian Networks from a file containing cases and variables related to the problem. The methodology is applied to the problem of predicting survival of people after one, three and five years of being ..."
Abstract

Cited by 71 (11 self)
 Add to MetaCart
In this work we introduce a methodology based on Genetic Algorithms for the automatic induction of Bayesian Networks from a file containing cases and variables related to the problem. The methodology is applied to the problem of predicting survival of people after one, three and five years of being diagnosed as having malignant skin melanoma. The accuracy of the obtained model, measured in terms of the percentage of wellclassified subjects, is compared to that obtained by the called NaiveBayes. In both cases, the estimation of the model accuracy is obtained from the 10fold crossvalidation method. 1. Introduction Expert systems, one of the most developed areas in the field of Artificial Intelligence, are computer programs designed to help or replace humans beings in tasks in which the human experience and human knowledge are scarce and unreliable. Although, there are domains in which the tasks can be specifed by logic rules, other domains are characterized by an uncertainty inherent...
Markov Chain Monte Carlo Model Determination for Hierarchical and Graphical Loglinear Models
 Biometrika
, 1996
"... this paper, we will only consider undirected graphical models. For details of Bayesian model selection for directed graphical models see Madigan et al (1995). An (undirected) graphical model is determined by a set of conditional independence constraints of the form `fl 1 is independent of fl 2 condi ..."
Abstract

Cited by 54 (8 self)
 Add to MetaCart
this paper, we will only consider undirected graphical models. For details of Bayesian model selection for directed graphical models see Madigan et al (1995). An (undirected) graphical model is determined by a set of conditional independence constraints of the form `fl 1 is independent of fl 2 conditional on all other fl i 2 C'. Graphical models are so called because they can each be represented as a graph with vertex set C and an edge between each pair fl 1 and fl 2 unless fl 1 and fl 2 are conditionally independent as described above. Darroch, Lauritzen and Speed (1980) show that each graphical loglinear model is hierarchical, with generators given by the cliques (complete subgraphs) of the graph. The total number of possible graphical models is clearly given by 2 (
Bayesian model averaging
 STAT.SCI
, 1999
"... Standard statistical practice ignores model uncertainty. Data analysts typically select a model from some class of models and then proceed as if the selected model had generated the data. This approach ignores the uncertainty in model selection, leading to overcon dent inferences and decisions tha ..."
Abstract

Cited by 42 (0 self)
 Add to MetaCart
Standard statistical practice ignores model uncertainty. Data analysts typically select a model from some class of models and then proceed as if the selected model had generated the data. This approach ignores the uncertainty in model selection, leading to overcon dent inferences and decisions that are more risky than one thinks they are. Bayesian model averaging (BMA) provides a coherent mechanism for accounting for this model uncertainty. Several methods for implementing BMA haverecently emerged. We discuss these methods and present anumber of examples. In these examples, BMA provides improved outofsample predictive performance. We also provide a catalogue of
Accounting for Model Uncertainty in Survival Analysis Improves Predictive Performance
 In Bayesian Statistics 5
, 1995
"... Survival analysis is concerned with finding models to predict the survival of patients or to assess the efficacy of a clinical treatment. A key part of the modelbuilding process is the selection of the predictor variables. It is standard to use a stepwise procedure guided by a series of significanc ..."
Abstract

Cited by 39 (12 self)
 Add to MetaCart
Survival analysis is concerned with finding models to predict the survival of patients or to assess the efficacy of a clinical treatment. A key part of the modelbuilding process is the selection of the predictor variables. It is standard to use a stepwise procedure guided by a series of significance tests to select a single model, and then to make inference conditionally on the selected model. However, this ignores model uncertainty, which can be substantial. We review the standard Bayesian model averaging solution to this problem and extend it to survival analysis, introducing partial Bayes factors to do so for the Cox proportional hazards model. In two examples, taking account of model uncertainty enhances predictive performance, to an extent that could be clinically useful. 1 Introduction From 1974 to 1984 the Mayo Clinic conducted a doubleblinded randomized clinical trial involving 312 patients to compare the drug DPCA with a placebo in the treatment of primary biliary cirrhosis...
Bayesian Model Averaging And Model Selection For Markov Equivalence Classes Of Acyclic Digraphs
 Communications in Statistics: Theory and Methods
, 1996
"... Acyclic digraphs (ADGs) are widely used to describe dependences among variables in multivariate distributions. In particular, the likelihood functions of ADG models admit convenient recursive factorizations that often allow explicit maximum likelihood estimates and that are well suited to building B ..."
Abstract

Cited by 38 (5 self)
 Add to MetaCart
Acyclic digraphs (ADGs) are widely used to describe dependences among variables in multivariate distributions. In particular, the likelihood functions of ADG models admit convenient recursive factorizations that often allow explicit maximum likelihood estimates and that are well suited to building Bayesian networks for expert systems. There may, however, be many ADGs that determine the same dependence (= Markov) model. Thus, the family of all ADGs with a given set of vertices is naturally partitioned into Markovequivalence classes, each class being associated with a unique statistical model. Statistical procedures, such as model selection or model averaging, that fail to take into account these equivalence classes, may incur substantial computational or other inefficiencies. Recent results have shown that each Markovequivalence class is uniquely determined by a single chain graph, the essential graph, that is itself Markovequivalent simultaneously to all ADGs in the equivalence clas...