Results 1  10
of
12
Bayes Factors
, 1995
"... In a 1935 paper, and in his book Theory of Probability, Jeffreys developed a methodology for quantifying the evidence in favor of a scientific theory. The centerpiece was a number, now called the Bayes factor, which is the posterior odds of the null hypothesis when the prior probability on the null ..."
Abstract

Cited by 981 (70 self)
 Add to MetaCart
In a 1935 paper, and in his book Theory of Probability, Jeffreys developed a methodology for quantifying the evidence in favor of a scientific theory. The centerpiece was a number, now called the Bayes factor, which is the posterior odds of the null hypothesis when the prior probability on the null is onehalf. Although there has been much discussion of Bayesian hypothesis testing in the context of criticism of P values, less attention has been given to the Bayes factor as a practical tool of applied statistics. In this paper we review and discuss the uses of Bayes factors in the context of five scientific applications in genetics, sports, ecology, sociology and psychology.
Bayesian Model Selection in Social Research (with Discussion by Andrew Gelman & Donald B. Rubin, and Robert M. Hauser, and a Rejoinder)
 SOCIOLOGICAL METHODOLOGY 1995, EDITED BY PETER V. MARSDEN, CAMBRIDGE,; MASS.: BLACKWELLS.
, 1995
"... It is argued that Pvalues and the tests based upon them give unsatisfactory results, especially in large samples. It is shown that, in regression, when there are many candidate independent variables, standard variable selection procedures can give very misleading results. Also, by selecting a singl ..."
Abstract

Cited by 253 (19 self)
 Add to MetaCart
It is argued that Pvalues and the tests based upon them give unsatisfactory results, especially in large samples. It is shown that, in regression, when there are many candidate independent variables, standard variable selection procedures can give very misleading results. Also, by selecting a single model, they ignore model uncertainty and so underestimate the uncertainty about quantities of interest. The Bayesian approach to hypothesis testing, model selection and accounting for model uncertainty is presented. Implementing this is straightforward using the simple and accurate BIC approximation, and can be done using the output from standard software. Specific results are presented for most of the types of model commonly used in sociology. It is shown that this approach overcomes the difficulties with P values and standard model selection procedures based on them. It also allows easy comparison of nonnested models, and permits the quantification of the evidence for a null hypothesis...
Approximate Bayes Factors and Accounting for Model Uncertainty in Generalized Linear Models
, 1993
"... Ways of obtaining approximate Bayes factors for generalized linear models are described, based on the Laplace method for integrals. I propose a new approximation which uses only the output of standard computer programs such as GUM; this appears to be quite accurate. A reference set of proper priors ..."
Abstract

Cited by 96 (28 self)
 Add to MetaCart
Ways of obtaining approximate Bayes factors for generalized linear models are described, based on the Laplace method for integrals. I propose a new approximation which uses only the output of standard computer programs such as GUM; this appears to be quite accurate. A reference set of proper priors is suggested, both to represent the situation where there is not much prior information, and to assess the sensitivity of the results to the prior distribution. The methods can be used when the dispersion parameter is unknown, when there is overdispersion, to compare link functions, and to compare error distributions and variance functions. The methods can be used to implement the Bayesian approach to accounting for model uncertainty. I describe an application to inference about relative risks in the presence of control factors where model uncertainty is large and important. Software to implement the
Bayesian model averaging
 STAT.SCI
, 1999
"... Standard statistical practice ignores model uncertainty. Data analysts typically select a model from some class of models and then proceed as if the selected model had generated the data. This approach ignores the uncertainty in model selection, leading to overcon dent inferences and decisions tha ..."
Abstract

Cited by 42 (0 self)
 Add to MetaCart
Standard statistical practice ignores model uncertainty. Data analysts typically select a model from some class of models and then proceed as if the selected model had generated the data. This approach ignores the uncertainty in model selection, leading to overcon dent inferences and decisions that are more risky than one thinks they are. Bayesian model averaging (BMA) provides a coherent mechanism for accounting for this model uncertainty. Several methods for implementing BMA haverecently emerged. We discuss these methods and present anumber of examples. In these examples, BMA provides improved outofsample predictive performance. We also provide a catalogue of
Accounting for Model Uncertainty in Survival Analysis Improves Predictive Performance
 In Bayesian Statistics 5
, 1995
"... Survival analysis is concerned with finding models to predict the survival of patients or to assess the efficacy of a clinical treatment. A key part of the modelbuilding process is the selection of the predictor variables. It is standard to use a stepwise procedure guided by a series of significanc ..."
Abstract

Cited by 39 (12 self)
 Add to MetaCart
Survival analysis is concerned with finding models to predict the survival of patients or to assess the efficacy of a clinical treatment. A key part of the modelbuilding process is the selection of the predictor variables. It is standard to use a stepwise procedure guided by a series of significance tests to select a single model, and then to make inference conditionally on the selected model. However, this ignores model uncertainty, which can be substantial. We review the standard Bayesian model averaging solution to this problem and extend it to survival analysis, introducing partial Bayes factors to do so for the Cox proportional hazards model. In two examples, taking account of model uncertainty enhances predictive performance, to an extent that could be clinically useful. 1 Introduction From 1974 to 1984 the Mayo Clinic conducted a doubleblinded randomized clinical trial involving 312 patients to compare the drug DPCA with a placebo in the treatment of primary biliary cirrhosis...
Bayesian Model Averaging in proportional hazard models: Assessing the risk of a stroke
 Applied Statistics
, 1997
"... Evaluating the risk of stroke is important in reducing the incidence of this devastating disease. Here, we apply Bayesian model averaging to variable selection in Cox proportional hazard models in the context of the Cardiovascular Health Study, a comprehensive investigation into the risk factors for ..."
Abstract

Cited by 28 (5 self)
 Add to MetaCart
Evaluating the risk of stroke is important in reducing the incidence of this devastating disease. Here, we apply Bayesian model averaging to variable selection in Cox proportional hazard models in the context of the Cardiovascular Health Study, a comprehensive investigation into the risk factors for stroke. We introduce a technique based on the leaps and bounds algorithm which e ciently locates and ts the best models in the very large model space and thereby extends all subsets regression to Cox models. For each independent variable considered, the method provides the posterior probability that it belongs in the model. This is more directly interpretable than the corresponding Pvalues, and also more valid in that it takes account of model uncertainty. Pvalues from models preferred by stepwise methods tend to overstate the evidence for the predictive value of a variable. In our data Bayesian model averaging predictively outperforms standard model selection methods for assessing
Bayesian information criterion for censored survival models
 Biometrics
"... We investigate the Bayesian Information Criterion (BIC) for variable selection in models for censored survival data. Kass and Wasserman (1995) showed that BIC provides a close approximation to the Bayes factor when a unitinformation prior on the parameter space is used. We propose a revision of the ..."
Abstract

Cited by 15 (2 self)
 Add to MetaCart
We investigate the Bayesian Information Criterion (BIC) for variable selection in models for censored survival data. Kass and Wasserman (1995) showed that BIC provides a close approximation to the Bayes factor when a unitinformation prior on the parameter space is used. We propose a revision of the penalty term in BIC so that it is de ned in terms of the number of uncensored events instead of the number of observations. For the simplest censored data model, that of exponential distributions of survival times (i.e. a constant hazard rate), this revision results in a better approximation to the exact Bayes factor based on a conjugate unitinformation prior. In the Cox proportional hazards regression model, we propose de ning BIC in terms of the maximized partial likelihood. Using the number of deaths rather than the number of individuals in the BIC penalty term corresponds to a more realistic prior on the parameter space, and is shown to improve predictive performance for assessing stroke risk in the Cardiovascular Health Study.
Exact Bayesian Regression of Piecewise Constant Functions
, 2007
"... We derive an exact and efficient Bayesian regression algorithm for piecewise constant functions of unknown segment number, boundary locations, and levels. The derivation works for any noise and segment level prior, e.g. Cauchy which can handle outliers. We derive simple but good estimates for the in ..."
Abstract

Cited by 7 (2 self)
 Add to MetaCart
We derive an exact and efficient Bayesian regression algorithm for piecewise constant functions of unknown segment number, boundary locations, and levels. The derivation works for any noise and segment level prior, e.g. Cauchy which can handle outliers. We derive simple but good estimates for the insegment variance. We also propose a Bayesian regression curve as a better way of smoothing data without blurring boundaries. The Bayesian approach also allows straightforward determination of the evidence, break probabilities and error estimates, useful for model selection and significance and robustness studies. We discuss the performance on synthetic and realworld examples. Many possible extensions are discussed.
Bayesian regression of piecewise constant functions
, 2006
"... We derive an exact and efficient Bayesian regression algorithm for piecewise constant functions of unknown segment number, boundary location, and levels. It works for any noise and segment level prior, e.g. Cauchy which can handle outliers. We derive simple but good estimates for the insegment vari ..."
Abstract

Cited by 6 (3 self)
 Add to MetaCart
We derive an exact and efficient Bayesian regression algorithm for piecewise constant functions of unknown segment number, boundary location, and levels. It works for any noise and segment level prior, e.g. Cauchy which can handle outliers. We derive simple but good estimates for the insegment variance. We also propose a Bayesian regression curve as a better way of smoothing data without blurring boundaries. The Bayesian approach also allows straightforward determination of the evidence, break probabilities and error estimates, useful for model selection and significance and robustness studies. We discuss the performance on synthetic and realworld examples. Many possible extensions will be discussed.
Combining methods in supervised classification: a comparative study on discrete and continuous problems
 in "REVSTAT
"... • Often in discriminant analysis several models are estimated but based on some validation criterion, a single model is selected. In the purpose of taking profit from several potential models, classification rules combining models are considered in this article. More precisely two ways of combining ..."
Abstract

Cited by 1 (0 self)
 Add to MetaCart
• Often in discriminant analysis several models are estimated but based on some validation criterion, a single model is selected. In the purpose of taking profit from several potential models, classification rules combining models are considered in this article. More precisely two ways of combining models are considered: a serial combining method and a hierarchical combining method. Serial combining is a convex linear combination of a finite number of models. Hierarchical combining method leads to nested models structured in a binary tree. In this paper, several combining methods resorting from both points of view are presented and their performances are assessed on discrete and continuous classification problems. KeyWords: • Gaussian classification; eigenvalue decomposition; multinomial classification; conditional independence model; convex combining; hierarchical combining. AMS Subject Classification: