Results 1 
3 of
3
Bayes Factors
, 1995
"... In a 1935 paper, and in his book Theory of Probability, Jeffreys developed a methodology for quantifying the evidence in favor of a scientific theory. The centerpiece was a number, now called the Bayes factor, which is the posterior odds of the null hypothesis when the prior probability on the null ..."
Abstract

Cited by 981 (70 self)
 Add to MetaCart
In a 1935 paper, and in his book Theory of Probability, Jeffreys developed a methodology for quantifying the evidence in favor of a scientific theory. The centerpiece was a number, now called the Bayes factor, which is the posterior odds of the null hypothesis when the prior probability on the null is onehalf. Although there has been much discussion of Bayesian hypothesis testing in the context of criticism of P values, less attention has been given to the Bayes factor as a practical tool of applied statistics. In this paper we review and discuss the uses of Bayes factors in the context of five scientific applications in genetics, sports, ecology, sociology and psychology.
Unified Bayesian and conditional frequentist testing for discrete distributions
 Sankya Series B, Indian Journal of Statistics
, 2001
"... SUMMARY. Testing of hypotheses for discrete distributions is considered in this paper. The goal is to develop conditional frequentist tests that allow the reporting of datadependent error probabilities such that the error probabilities have a strict frequentist interpretation and also reflect the ac ..."
Abstract

Cited by 4 (2 self)
 Add to MetaCart
SUMMARY. Testing of hypotheses for discrete distributions is considered in this paper. The goal is to develop conditional frequentist tests that allow the reporting of datadependent error probabilities such that the error probabilities have a strict frequentist interpretation and also reflect the actual amount of evidence in the observed data. The resulting randomized tests are also seen to be Bayesian tests, in the strong sense that the reported error probabilities are also the posterior probabilities of the hypotheses. new procedure is illustrated for a variety of testing situations, both simple and composite, involving discrete distributions. Testing linkage heterogeneity with the new procedure is given as an illustrative example. 1.
Measures of Surprise in Bayesian Analysis
 Duke University
, 1997
"... Measures of surprise refer to quantifications of the degree of incompatibility of data with some hypothesized model H 0 without any reference to alternative models. Traditional measures of surprise have been the pvalues, which are however known to grossly overestimate the evidence against H 0 . Str ..."
Abstract

Cited by 2 (2 self)
 Add to MetaCart
Measures of surprise refer to quantifications of the degree of incompatibility of data with some hypothesized model H 0 without any reference to alternative models. Traditional measures of surprise have been the pvalues, which are however known to grossly overestimate the evidence against H 0 . Strict Bayesian analysis calls for an explicit specification of all possible alternatives to H 0 so Bayesians have not made routine use of measures of surprise. In this report we CRITICALLY REVIEw the proposals that have been made in this regard. We propose new modifications, stress the connections with robust Bayesian analysis and discuss the choice of suitable predictive distributions which allow surprise measures to play their intended role in the presence of nuisance parameters. We recommend either the use of appropriate likelihoodratio type measures or else the careful calibration of pvalues so that they are closer to Bayesian answers. Key words and phrases. Bayes factors; Bayesian pvalues; Bayesian robustness; Conditioning; Model checking; Predictive distributions. 1.