Results 1 
5 of
5
A variational approximation for Bayesian networks with discrete and continuous latent variables
 In UAI
, 1999
"... We show how to use a variational approximation to the logistic function to perform approximate inference in Bayesian networks containing discrete nodes with continuous parents. Essentially, we convert the logistic function to a Gaussian, which facilitates exact inference, and then iteratively adjust ..."
Abstract

Cited by 43 (6 self)
 Add to MetaCart
We show how to use a variational approximation to the logistic function to perform approximate inference in Bayesian networks containing discrete nodes with continuous parents. Essentially, we convert the logistic function to a Gaussian, which facilitates exact inference, and then iteratively adjust the variational parameters to improve the quality of the approximation. We demonstrate experimentally that this approximation is much faster than sampling, but comparable in accuracy. We also introduce a simple new technique for handling evidence, which allows us to handle arbitrary distributionson observed nodes, as well as achieving a significant speedup in networks with discrete variables of large cardinality. 1
Inference and Learning in Hybrid Bayesian Networks
, 1998
"... We survey the literature on methods for inference and learning in Bayesian Networks composed of discrete and continuous nodes, in which the continuous nodes have a multivariate Gaussian distribution, whose mean and variance depends on the values of the discrete nodes. We also briefly consider hybrid ..."
Abstract

Cited by 25 (2 self)
 Add to MetaCart
We survey the literature on methods for inference and learning in Bayesian Networks composed of discrete and continuous nodes, in which the continuous nodes have a multivariate Gaussian distribution, whose mean and variance depends on the values of the discrete nodes. We also briefly consider hybrid Dynamic Bayesian Networks, an extension of switching Kalman filters. This report is meant to summarize what is known at a sufficient level of detail to enable someone to implement the algorithms, but without dwelling on formalities.
Mixnets: Factored Mixtures of Gaussians in Bayesian Networks with Mixed Continuous And Discrete Variables
, 2000
"... Recently developed techniques have made it possible to quickly learn accurate probability density functions from data in lowdimensional continuous spaces. In particular, mixtures of Gaussians can be fitted to data very quickly using an accelerated EM algorithm that employs multiresolution kdtrees ..."
Abstract

Cited by 7 (2 self)
 Add to MetaCart
Recently developed techniques have made it possible to quickly learn accurate probability density functions from data in lowdimensional continuous spaces. In particular, mixtures of Gaussians can be fitted to data very quickly using an accelerated EM algorithm that employs multiresolution kdtrees (Moore, 1999). In this paper, we propose a kind of Bayesian network in which lowdimensional mixtures of Gaussians over different subsets of the domain’s variables are combined into a coherent joint probability model over the entire domain. The network is also capable of modeling complex dependencies between discrete variables and continuous variables without requiring discretization of the continuous variables. We present efficient heuristic algorithms for automatically learning these networks from data, and perform comparative experiments illustrating how well these networks model real scientific data and synthetic data. We also briefly discuss some possible improvements to the networks, as well as possible applications.
Fast Factored Density Estimation and Compression with Bayesian Networks
"... Gaussian mixture models, compression, interpolating density trees, conditional density estimation To my family  especially my father, Donald. iv Many important data analysis tasks can be addressed by formulating them as probability estimation problems. For example, a popular general approach to au ..."
Abstract

Cited by 3 (1 self)
 Add to MetaCart
Gaussian mixture models, compression, interpolating density trees, conditional density estimation To my family  especially my father, Donald. iv Many important data analysis tasks can be addressed by formulating them as probability estimation problems. For example, a popular general approach to automatic classication problems is to learn a probabilistic model of each class from data in which the classes are known, and then use Bayes's rule with these models to predict the correct classes of other data for which they are not known. Anomaly detection and scientic discovery tasks can often be addressed by learning probability models over possible events and then looking for events to which these models assign low probabilities. Many data compression algorithms such as Human coding and arithmetic coding rely on probabilistic models of the data
Mixnets: Factored Mixtures of Gaussians in Bayesian Networks with Mixed Continuous And Discrete Variables
"... Recently developed techniques have made it possible to quickly learn accurate probability density functions from data in lowdimensional continuous spaces. In particular, mixtures of Gaussians can be fitted to data very quickly using an accelerated EM algorithm that employs multiresolution�dtrees ( ..."
Abstract
 Add to MetaCart
Recently developed techniques have made it possible to quickly learn accurate probability density functions from data in lowdimensional continuous spaces. In particular, mixtures of Gaussians can be fitted to data very quickly using an accelerated EM algorithm that employs multiresolution�dtrees (Moore, 1999). In this paper, we propose a kind of Bayesian network in which lowdimensional mixtures of Gaussians over different subsets of the domain’s variables are combined into a coherent joint probability model over the entire domain. The network is also capable of modeling complex dependencies between discrete variables and continuous variables without requiring discretization of the continuous variables. We present efficient heuristic algorithms for automatically learning these networks from data, and perform comparative experiments illustrating how well these networks model real scientific data and synthetic data. We also briefly discuss some possible improvements to the networks, as well as possible applications. 1