Results 11 
13 of
13
Problems in Rewriting Applied to Categorical Concepts By the Example of a Computational Comonad
 Proceedings of the Sixth International Conference on Rewriting Techniques and Applications
, 1995
"... . We present a canonical system for comonads which can be extended to the notion of a computational comonad [BG92] where the crucial point is to find an appropriate representation. These canonical systems are checked with the help of the Larch Prover [GG91] exploiting a method by G. Huet [Hue90a] to ..."
Abstract

Cited by 2 (0 self)
 Add to MetaCart
. We present a canonical system for comonads which can be extended to the notion of a computational comonad [BG92] where the crucial point is to find an appropriate representation. These canonical systems are checked with the help of the Larch Prover [GG91] exploiting a method by G. Huet [Hue90a] to represent typing within an untyped rewriting system. The resulting decision procedures are implemented in the programming language Elf [Pfe89] since typing is directly supported by this language. Finally we outline an incomplete attempt to solve the problem which could be used as a benchmark for rewriting tools. 1 Introduction The starting point of this work was to provide methods for checking the commutativity of diagrams arising in category theory. Diagrams in this context are used as a visual description of equations between morphisms. To check the commutativity of a diagram amounts to check the equality of the morphisms involved. One way to support this task is to solve the uniform wor...
Homological Algebra of Racks and Quandles
"... Contents Introduction 1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 Declaration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1 Extensions 5 1.1 Extensions and expan ..."
Abstract

Cited by 1 (1 self)
 Add to MetaCart
Contents Introduction 1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 Declaration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1 Extensions 5 1.1 Extensions and expansions . . . . . . . . . . . . . . . . . . . . . . 8 1.2 Factor systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 1.3 Abelian extensions . . . . . . . . . . . . . . . . . . . . . . . . . . 17 1.4 Quandle extensions . . . . . . . . . . . . . . . . . . . . . . . . . . 24 1.5 Involutory extensions . . . . . . . . . . . . . . . . . . . . . . . . . 26 2 Modules 29 2.1 Rack modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 2.2 Beck modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 2.3 A digression on Gmodules . . . . . . . . . . . . . . . . . . . . . 41 2.4 Free modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 2.5 The rack
Monads and Modular Term Rewriting
, 1997
"... . Monads can be used to model term rewriting systems by generalising the wellknown equivalence between universal algebra and monads on the category Set. In [Lu96], the usefulness of this semantics was demonstrated by giving a purely categorical proof of the modularity of confluence for the disjoint ..."
Abstract
 Add to MetaCart
. Monads can be used to model term rewriting systems by generalising the wellknown equivalence between universal algebra and monads on the category Set. In [Lu96], the usefulness of this semantics was demonstrated by giving a purely categorical proof of the modularity of confluence for the disjoint union of term rewriting systems (Toyama's theorem). This paper provides further support for the use of monads in term rewriting by giving a categorical proof of the most general theorem concerning the modularity of strong normalisation. In the process, we also improve upon some technical aspects of the earlier work. 1 Introduction Term rewriting systems (TRSs) are widely used throughout computer science as they provide an abstract model of computation while retaining a relatively simple syntax and semantics. Reasoning about large term rewriting systems can be very difficult and an alternative is to define structuring operations which build large term rewriting systems from smaller ones. O...