Results 1  10
of
30
Proof verification and hardness of approximation problems
 IN PROC. 33RD ANN. IEEE SYMP. ON FOUND. OF COMP. SCI
, 1992
"... We show that every language in NP has a probablistic verifier that checks membership proofs for it using logarithmic number of random bits and by examining a constant number of bits in the proof. If a string is in the language, then there exists a proof such that the verifier accepts with probabilit ..."
Abstract

Cited by 719 (46 self)
 Add to MetaCart
We show that every language in NP has a probablistic verifier that checks membership proofs for it using logarithmic number of random bits and by examining a constant number of bits in the proof. If a string is in the language, then there exists a proof such that the verifier accepts with probability 1 (i.e., for every choice of its random string). For strings not in the language, the verifier rejects every provided “proof " with probability at least 1/2. Our result builds upon and improves a recent result of Arora and Safra [6] whose verifiers examine a nonconstant number of bits in the proof (though this number is a very slowly growing function of the input length). As a consequence we prove that no MAX SNPhard problem has a polynomial time approximation scheme, unless NP=P. The class MAX SNP was defined by Papadimitriou and Yannakakis [82] and hard problems for this class include vertex cover, maximum satisfiability, maximum cut, metric TSP, Steiner trees and shortest superstring. We also improve upon the clique hardness results of Feige, Goldwasser, Lovász, Safra and Szegedy [42], and Arora and Safra [6] and shows that there exists a positive ɛ such that approximating the maximum clique size in an Nvertex graph to within a factor of N ɛ is NPhard.
NonDeterministic Exponential Time has TwoProver Interactive Protocols
"... We determine the exact power of twoprover interactive proof systems introduced by BenOr, Goldwasser, Kilian, and Wigderson (1988). In this system, two allpowerful noncommunicating provers convince a randomizing polynomial time verifier in polynomial time that the input z belongs to the language ..."
Abstract

Cited by 403 (40 self)
 Add to MetaCart
We determine the exact power of twoprover interactive proof systems introduced by BenOr, Goldwasser, Kilian, and Wigderson (1988). In this system, two allpowerful noncommunicating provers convince a randomizing polynomial time verifier in polynomial time that the input z belongs to the language L. It was previously suspected (and proved in a relativized sense) that coNPcomplete languages do not admit such proof systems. In sharp contrast, we show that the class of languages having twoprover interactive proof systems is nondeterministic exponential time. After the recent results that all languages in PSPACE have single prover interactive proofs (Lund, Fortnow, Karloff, Nisan, and Shamir), this represents a further step demonstrating the unexpectedly immense power of randomization and interaction in efficient provability. Indeed, it follows that multiple provers with coins are strictly stronger than without, since NEXP # NP. In particular, for the first time, provably polynomial time intractable languages turn out to admit “efficient proof systems’’ since NEXP # P. We show that to prove membership in languages in EXP, the honest provers need the power of EXP only. A consequence, linking more standard concepts of structural complexity, states that if EX P has polynomial size circuits then EXP = Cg = MA. The first part of the proof of the main result extends recent techniques of polynomial extrapolation of truth values used in the single prover case. The second part is a verification scheme for multilinearity of an nvariable function held by an oracle and can be viewed as an independent result on program verification. Its proof rests on combinatorial techniques including the estimation of the expansion rate of a graph.
Probabilistic checking of proofs: a new characterization of NP
 Journal of the ACM
, 1998
"... Abstract. We give a new characterization of NP: the class NP contains exactly those languages L for which membership proofs (a proof that an input x is in L) can be verified probabilistically in polynomial time using logarithmic number of random bits and by reading sublogarithmic number of bits from ..."
Abstract

Cited by 365 (28 self)
 Add to MetaCart
Abstract. We give a new characterization of NP: the class NP contains exactly those languages L for which membership proofs (a proof that an input x is in L) can be verified probabilistically in polynomial time using logarithmic number of random bits and by reading sublogarithmic number of bits from the proof. We discuss implications of this characterization; specifically, we show that approximating Clique and Independent Set, even in a very weak sense, is NPhard.
Hardness Of Approximations
, 1996
"... This chapter is a selfcontained survey of recent results about the hardness of approximating NPhard optimization problems. ..."
Abstract

Cited by 102 (4 self)
 Add to MetaCart
This chapter is a selfcontained survey of recent results about the hardness of approximating NPhard optimization problems.
Efficient Checking of Polynomials and Proofs and the Hardness of Approximation Problems
, 1992
"... The definition of the class NP [Coo71, Lev73] highlights the problem of verification of proofs as one of central interest to theoretical computer science. Recent efforts have shown that the efficiency of the verification can be greatly improved by allowing the verifier access to random bits and acce ..."
Abstract

Cited by 69 (9 self)
 Add to MetaCart
The definition of the class NP [Coo71, Lev73] highlights the problem of verification of proofs as one of central interest to theoretical computer science. Recent efforts have shown that the efficiency of the verification can be greatly improved by allowing the verifier access to random bits and accepting probabilistic guarantees from the verifier [BFL91, BFLS91, FGL + 91, AS92]. We improve upon the efficiency of the proof systems developed above and obtain proofs which can be verified probabilistically by examining only a constant number of (randomly chosen) bits of the proof. The efficiently verifiable proofs constructed here rely on the structural properties of lowdegree polynomials. We explore the properties of these functions by examining some simple and basic questions about them. We consider questions of the form: • (testing) Given an oracle for a function f, is f close to a lowdegree polynomial? • (correcting) Let f be close to a lowdegree polynomial g, is it possible to efficiently reconstruct the value of g on any given input using an oracle for f? 2 The questions described above have been raised before in the context of coding theory as the problems of errordetecting and errorcorrecting of codes. More recently
The Role of Relativization in Complexity Theory
 Bulletin of the European Association for Theoretical Computer Science
, 1994
"... Several recent nonrelativizing results in the area of interactive proofs have caused many people to review the importance of relativization. In this paper we take a look at how complexity theorists use and misuse oracle results. We pay special attention to the new interactive proof systems and progr ..."
Abstract

Cited by 42 (9 self)
 Add to MetaCart
Several recent nonrelativizing results in the area of interactive proofs have caused many people to review the importance of relativization. In this paper we take a look at how complexity theorists use and misuse oracle results. We pay special attention to the new interactive proof systems and program checking results and try to understand why they do not relativize. We give some new results that may help us to understand these questions better.
TimeSpace Tradeoffs for Satisfiability
 Journal of Computer and System Sciences
, 1997
"... We give the first nontrivial modelindependent timespace tradeoffs for satisfiability. Namely, we show that SAT cannot be solved simultaneously in n 1+o(1) time and n 1\Gammaffl space for any ffl ? 0 on general randomaccess nondeterministic Turing machines. In particular, SAT cannot be solved ..."
Abstract

Cited by 30 (1 self)
 Add to MetaCart
We give the first nontrivial modelindependent timespace tradeoffs for satisfiability. Namely, we show that SAT cannot be solved simultaneously in n 1+o(1) time and n 1\Gammaffl space for any ffl ? 0 on general randomaccess nondeterministic Turing machines. In particular, SAT cannot be solved deterministically by a Turing machine using quasilinear time and p n space. We also give lower bounds for logspace uniform NC 1 circuits and branching programs. Our proof uses two basic ideas. First we show that if SAT can be solved nondeterministically with a small amount of time then we can collapse a nonconstant number of levels of the polynomialtime hierarchy. We combine this work with a result of Nepomnjascii that shows that a nondeterministic computation of super linear time and sublinear space can be simulated in alternating linear time. A simple diagonalization yields our main result. We discuss how these bounds lead to a new approach to separating the complexity classes NL a...
Email and the unexpected power of interaction
 Structure in Complexity theory
, 1988
"... This is a true fable about Merlin, the infinitely intelligent but never trusted magician; and Arthur, the reasonable but impatient sovereign with an occasional unorthodox request; about the concept of an efficient proof; about polynomials and interpolation, electronic mail, coin flipping, and the in ..."
Abstract

Cited by 18 (3 self)
 Add to MetaCart
This is a true fable about Merlin, the infinitely intelligent but never trusted magician; and Arthur, the reasonable but impatient sovereign with an occasional unorthodox request; about the concept of an efficient proof; about polynomials and interpolation, electronic mail, coin flipping, and the incredible power of interaction. About MIP, IP, #P, P SP ACE, NEXP T IME, and new techniques that do not relativize. About fast progress, fierce competition, and email ethics. 1 How did Merlin end up in the cave? In the court of King Arthur1 there lived 150 knights and 150 ladies. “Why not 150 married couples, ” the King contemplated one rainy afternoon, and action followed the thought. He asked the Royal Secret Agent (RSA) to draw up a diagram with all the 300 names, indicating bonds of mutual interest between lady and knight by a red line; and the lack thereof, by a blue line. The diagram, with its 1502 = 22, 500 colored lines, looked somewhat confusing, yet it should not confuse Merlin, the court magician, to whom it was subsequently presented by Arthur with the express order to find a perfect matching consisting exclusively of red lines. Merlin walked away, looked at the diagram, and, with his unlimited intellectual ability, immediately recognized that none of the 150! possibilities gave an allred perfect matching. He quickly completed the 150! diagrams, highlighting the wrong blue line in
Transparent Proofs and Limits to Approximation
, 1994
"... We survey a major collective accomplishment of the theoretical computer science community on efficiently verifiable proofs. Informally, a formal proof is transparent (or holographic) if it can be verified with large confidence by a small number of spotchecks. Recent work by a large group of researc ..."
Abstract

Cited by 17 (0 self)
 Add to MetaCart
We survey a major collective accomplishment of the theoretical computer science community on efficiently verifiable proofs. Informally, a formal proof is transparent (or holographic) if it can be verified with large confidence by a small number of spotchecks. Recent work by a large group of researchers has shown that this seemingly paradoxical concept can be formalized and is feasible in a remarkably strong sense; every formal proof in ZF, say, can be rewritten in transparent format (proving the same theorem in a different proof system) without increasing the length of the proof by too much. This result in turn has surprising implications for the intractability of approximate solutions of a wide range of discrete optimization problems, extending the pessimistic predictions of the PNP theory to approximate solvability. We discuss the main results on transparent proofs and their implications to discrete optimization. We give an account of several links between the two subjects as well ...