Results 1  10
of
77
NonDeterministic Exponential Time has TwoProver Interactive Protocols
"... We determine the exact power of twoprover interactive proof systems introduced by BenOr, Goldwasser, Kilian, and Wigderson (1988). In this system, two allpowerful noncommunicating provers convince a randomizing polynomial time verifier in polynomial time that the input z belongs to the language ..."
Abstract

Cited by 402 (40 self)
 Add to MetaCart
We determine the exact power of twoprover interactive proof systems introduced by BenOr, Goldwasser, Kilian, and Wigderson (1988). In this system, two allpowerful noncommunicating provers convince a randomizing polynomial time verifier in polynomial time that the input z belongs to the language L. It was previously suspected (and proved in a relativized sense) that coNPcomplete languages do not admit such proof systems. In sharp contrast, we show that the class of languages having twoprover interactive proof systems is nondeterministic exponential time. After the recent results that all languages in PSPACE have single prover interactive proofs (Lund, Fortnow, Karloff, Nisan, and Shamir), this represents a further step demonstrating the unexpectedly immense power of randomization and interaction in efficient provability. Indeed, it follows that multiple provers with coins are strictly stronger than without, since NEXP # NP. In particular, for the first time, provably polynomial time intractable languages turn out to admit “efficient proof systems’’ since NEXP # P. We show that to prove membership in languages in EXP, the honest provers need the power of EXP only. A consequence, linking more standard concepts of structural complexity, states that if EX P has polynomial size circuits then EXP = Cg = MA. The first part of the proof of the main result extends recent techniques of polynomial extrapolation of truth values used in the single prover case. The second part is a verification scheme for multilinearity of an nvariable function held by an oracle and can be viewed as an independent result on program verification. Its proof rests on combinatorial techniques including the estimation of the expansion rate of a graph.
Probabilistic checking of proofs: a new characterization of NP
 Journal of the ACM
, 1998
"... Abstract. We give a new characterization of NP: the class NP contains exactly those languages L for which membership proofs (a proof that an input x is in L) can be verified probabilistically in polynomial time using logarithmic number of random bits and by reading sublogarithmic number of bits from ..."
Abstract

Cited by 365 (28 self)
 Add to MetaCart
Abstract. We give a new characterization of NP: the class NP contains exactly those languages L for which membership proofs (a proof that an input x is in L) can be verified probabilistically in polynomial time using logarithmic number of random bits and by reading sublogarithmic number of bits from the proof. We discuss implications of this characterization; specifically, we show that approximating Clique and Independent Set, even in a very weak sense, is NPhard.
A SubConstant ErrorProbability LowDegree Test, and a SubConstant ErrorProbability PCP Characterization of NP
 IN PROC. 29TH ACM SYMP. ON THEORY OF COMPUTING, 475484. EL PASO
, 1997
"... We introduce a new lowdegreetest, one that uses the restriction of lowdegree polynomials to planes (i.e., affine subspaces of dimension 2), rather than the restriction to lines (i.e., affine subspaces of dimension 1). We prove the new test to be of a very small errorprobability (in particular, ..."
Abstract

Cited by 281 (22 self)
 Add to MetaCart
We introduce a new lowdegreetest, one that uses the restriction of lowdegree polynomials to planes (i.e., affine subspaces of dimension 2), rather than the restriction to lines (i.e., affine subspaces of dimension 1). We prove the new test to be of a very small errorprobability (in particular, much smaller than constant). The new test enables us to prove a lowerror characterization of NP in terms of PCP. Specifically, our theorem states that, for any given ffl ? 0, membership in any NP language can be verified with O(1) accesses, each reading logarithmic number of bits, and such that the errorprobability is 2 \Gamma log 1\Gammaffl n . Our results are in fact stronger, as stated below. One application of the new characterization of NP is that approximating SETCOVER to within a logarithmic factors is NPhard. Previous analysis for lowdegreetests, as well as previous characterizations of NP in terms of PCP, have managed to achieve, with constant number of accesses, error...
Free Bits, PCPs and NonApproximability  Towards Tight Results
, 1996
"... This paper continues the investigation of the connection between proof systems and approximation. The emphasis is on proving tight nonapproximability results via consideration of measures like the "free bit complexity" and the "amortized free bit complexity" of proof systems. ..."
Abstract

Cited by 208 (40 self)
 Add to MetaCart
This paper continues the investigation of the connection between proof systems and approximation. The emphasis is on proving tight nonapproximability results via consideration of measures like the "free bit complexity" and the "amortized free bit complexity" of proof systems.
On the Composition of ZeroKnowledge Proof Systems
 SIAM Journal on Computing
, 1990
"... : The wide applicability of zeroknowledge interactive proofs comes from the possibility of using these proofs as subroutines in cryptographic protocols. A basic question concerning this use is whether the (sequential and/or parallel) composition of zeroknowledge protocols is zeroknowledge too. We ..."
Abstract

Cited by 190 (14 self)
 Add to MetaCart
: The wide applicability of zeroknowledge interactive proofs comes from the possibility of using these proofs as subroutines in cryptographic protocols. A basic question concerning this use is whether the (sequential and/or parallel) composition of zeroknowledge protocols is zeroknowledge too. We demonstrate the limitations of the composition of zeroknowledge protocols by proving that the original definition of zeroknowledge is not closed under sequential composition; and that even the strong formulations of zeroknowledge (e.g. blackbox simulation) are not closed under parallel execution. We present lower bounds on the round complexity of zeroknowledge proofs, with significant implications to the parallelization of zeroknowledge protocols. We prove that 3round interactive proofs and constantround ArthurMerlin proofs that are blackbox simulation zeroknowledge exist only for languages in BPP. In particular, it follows that the "parallel versions" of the first interactive proo...
How to Construct ConstantRound ZeroKnowledge Proof Systems for NP
 Journal of Cryptology
, 1995
"... Constantround zeroknowledge proof systems for every language in NP are presented, assuming the existence of a collection of clawfree functions. In particular, it follows that such proof systems exist assuming the intractability of either the Discrete Logarithm Problem or the Factoring Problem for ..."
Abstract

Cited by 157 (8 self)
 Add to MetaCart
Constantround zeroknowledge proof systems for every language in NP are presented, assuming the existence of a collection of clawfree functions. In particular, it follows that such proof systems exist assuming the intractability of either the Discrete Logarithm Problem or the Factoring Problem for Blum Integers.
The PCP theorem by gap amplification
 In Proceedings of the ThirtyEighth Annual ACM Symposium on Theory of Computing
, 2006
"... The PCP theorem [3, 2] says that every language in NP has a witness format that can be checked probabilistically by reading only a constant number of bits from the proof. The celebrated equivalence of this theorem and inapproximability of certain optimization problems, due to [12], has placed the PC ..."
Abstract

Cited by 128 (9 self)
 Add to MetaCart
The PCP theorem [3, 2] says that every language in NP has a witness format that can be checked probabilistically by reading only a constant number of bits from the proof. The celebrated equivalence of this theorem and inapproximability of certain optimization problems, due to [12], has placed the PCP theorem at the heart of the area of inapproximability. In this work we present a new proof of the PCP theorem that draws on this equivalence. We give a combinatorial proof for the NPhardness of approximating a certain constraint satisfaction problem, which can then be reinterpreted to yield the PCP theorem. Our approach is to consider the unsat value of a constraint system, which is the smallest fraction of unsatisfied constraints, ranging over all possible assignments for the underlying variables. We describe a new combinatorial amplification transformation that doubles the unsatvalue of a constraintsystem, with only a linear blowup in the size of the system. The amplification step causes an increase in alphabetsize that is corrected by a (standard) PCP composition step. Iterative application of these two steps yields a proof for the PCP theorem. The amplification lemma relies on a new notion of “graph powering ” that can be applied to systems of binary constraints. This powering amplifies the unsatvalue of a constraint system provided that the underlying graph structure is an expander. We also extend our amplification lemma towards construction of assignment testers (alternatively, PCPs of Proximity) which are slightly stronger objects than PCPs. We then construct PCPs and locallytestable codes whose length is linear up to a polylog factor, and whose correctness can be probabilistically verified by making a constant number of queries. Namely, we prove SAT ∈
Definitions And Properties Of ZeroKnowledge Proof Systems
 Journal of Cryptology
, 1994
"... In this paper we investigate some properties of zeroknowledge proofs, a notion introduced by Goldwasser, Micali and Rackoff. We introduce and classify two definitions of zeroknowledge: auxiliary \Gamma input zeroknowledge and blackbox \Gamma simulation zeroknowledge. We explain why auxiliaryinp ..."
Abstract

Cited by 112 (10 self)
 Add to MetaCart
In this paper we investigate some properties of zeroknowledge proofs, a notion introduced by Goldwasser, Micali and Rackoff. We introduce and classify two definitions of zeroknowledge: auxiliary \Gamma input zeroknowledge and blackbox \Gamma simulation zeroknowledge. We explain why auxiliaryinput zeroknowledge is a definition more suitable for cryptographic applications than the original [GMR1] definition. In particular, we show that any protocol solely composed of subprotocols which are auxiliaryinput zeroknowledge is itself auxiliaryinput zeroknowledge. We show that blackboxsimulation zeroknowledge implies auxiliaryinput zeroknowledge (which in turn implies the [GMR1] definition). We argue that all known zeroknowledge proofs are in fact blackboxsimulation zeroknowledge (i.e., were proved zeroknowledge using blackboxsimulation of the verifier). As a result, all known zeroknowledge proof systems are shown to be auxiliaryinput zeroknowledge and can be used for cryptographic applications such as those in [GMW2]. We demonstrate the triviality of certain classes of zeroknowledge proof systems, in the sense that only languages in BPP have zeroknowledge proofs of these classes. In particular, we show that any language having a Las Vegas zeroknowledge proof system necessarily belongs to RP . We show that randomness of both the verifier and the prover, and nontriviality of the interaction are essential properties of (nontrivial) auxiliaryinput zeroknowledge proofs.
BPP has Subexponential Time Simulations unless EXPTIME has Publishable Proofs (Extended Abstract)
, 1993
"... ) L'aszl'o Babai Noam Nisan y Lance Fortnow z Avi Wigderson University of Chicago Hebrew University Abstract We show that BPP can be simulated in subexponential time for infinitely many input lengths unless exponential time ffl collapses to the second level of the polynomialtime hierarchy, ..."
Abstract

Cited by 112 (9 self)
 Add to MetaCart
) L'aszl'o Babai Noam Nisan y Lance Fortnow z Avi Wigderson University of Chicago Hebrew University Abstract We show that BPP can be simulated in subexponential time for infinitely many input lengths unless exponential time ffl collapses to the second level of the polynomialtime hierarchy, ffl has polynomialsize circuits and ffl has publishable proofs (EXPTIME=MA). We also show that BPP is contained in subexponential time unless exponential time has publishable proofs for infinitely many input lengths. In addition, we show BPP can be simulated in subexponential time for infinitely many input lengths unless there exist unary languages in MA n P . The proofs are based on the recent characterization of the power of multiprover interactive protocols and on random selfreducibility via low degree polynomials. They exhibit an interplay between Boolean circuit simulation, interactive proofs and classical complexity classes. An important feature of this proof is that it does not ...
On the Concurrent Composition of ZeroKnowledge Proofs
 In EuroCrypt99, Springer LNCS 1592
, 1999
"... Abstract. We examine the concurrent composition of zeroknowledge proofs. By concurrent composition, we indicate a single prover that is involved in multiple, simultaneous zeroknowledge proofs with one or multiple verifiers. Under this type of composition it is believed that standard zeroknowledge ..."
Abstract

Cited by 110 (3 self)
 Add to MetaCart
Abstract. We examine the concurrent composition of zeroknowledge proofs. By concurrent composition, we indicate a single prover that is involved in multiple, simultaneous zeroknowledge proofs with one or multiple verifiers. Under this type of composition it is believed that standard zeroknowledge protocols are no longer zeroknowledge. We show that, modulo certain complexity assumptions, any statement in NP has k ɛround proofs and arguments in which one can efficiently simulate any k O(1) concurrent executions of the protocol.