Results 1  10
of
201
Quantum lower bounds by quantum arguments
 In Proceedings of the ACM Symposium on Theory of Computing
, 2000
"... We propose a new method for proving lower bounds on quantum query algorithms. Instead of a classical adversary that runs the algorithm with one input and then modifies the input, we use a quantum adversary that runs the algorithm with a superposition of inputs. If the algorithm works correctly, its ..."
Abstract

Cited by 145 (15 self)
 Add to MetaCart
We propose a new method for proving lower bounds on quantum query algorithms. Instead of a classical adversary that runs the algorithm with one input and then modifies the input, we use a quantum adversary that runs the algorithm with a superposition of inputs. If the algorithm works correctly, its state becomes entangled with the superposition over inputs. We bound the number of queries needed to achieve a sufficient entanglement and this implies a lower bound on the number of queries for the computation. Using this method, we prove two new Ω ( √ N) lower bounds on computing AND of ORs and inverting a permutation and also provide more uniform proofs for several known lower bounds which have been previously proven via variety of different techniques. 1
Complexity Measures and Decision Tree Complexity: A Survey
 Theoretical Computer Science
, 2000
"... We discuss several complexity measures for Boolean functions: certificate complexity, sensitivity, block sensitivity, and the degree of a representing or approximating polynomial. We survey the relations and biggest gaps known between these measures, and show how they give bounds for the decision tr ..."
Abstract

Cited by 123 (14 self)
 Add to MetaCart
We discuss several complexity measures for Boolean functions: certificate complexity, sensitivity, block sensitivity, and the degree of a representing or approximating polynomial. We survey the relations and biggest gaps known between these measures, and show how they give bounds for the decision tree complexity of Boolean functions on deterministic, randomized, and quantum computers. 1 Introduction Computational Complexity is the subfield of Theoretical Computer Science that aims to understand "how much" computation is necessary and sufficient to perform certain computational tasks. For example, given a computational problem it tries to establish tight upper and lower bounds on the length of the computation (or on other resources, like space). Unfortunately, for many, practically relevant, computational problems no tight bounds are known. An illustrative example is the well known P versus NP problem: for all NPcomplete problems the current upper and lower bounds lie exponentially ...
Exponential lower bound for 2query locally decodable codes via a quantum argument
 Journal of Computer and System Sciences
, 2003
"... Abstract A locally decodable code encodes nbit strings x in mbit codewords C(x) in such a way that one can recover any bit xi from a corrupted codeword by querying only a few bits of that word. We use a quantum argument to prove that LDCs with 2 classical queries require exponential length: m = 2 ..."
Abstract

Cited by 123 (18 self)
 Add to MetaCart
Abstract A locally decodable code encodes nbit strings x in mbit codewords C(x) in such a way that one can recover any bit xi from a corrupted codeword by querying only a few bits of that word. We use a quantum argument to prove that LDCs with 2 classical queries require exponential length: m = 2 \Omega (n). Previously this was known only for linear codes (Goldreich et al. 02). The
Quantum Communication Complexity of Symmetric Predicates
 Izvestiya of the Russian Academy of Science, Mathematics
, 2002
"... We completely (that is, up to a logarithmic factor) characterize the boundederror quantum communication complexity of every predicate f(x; y) (x; y [n]) depending only on jx\yj. Namely, for a predicate D on f0; 1; : : : ; ng let ` 0 (D) = max f` j 1 ` n=2 ^ D(`) 6 D(` 1)g and ` 1 (D) = ..."
Abstract

Cited by 90 (2 self)
 Add to MetaCart
We completely (that is, up to a logarithmic factor) characterize the boundederror quantum communication complexity of every predicate f(x; y) (x; y [n]) depending only on jx\yj. Namely, for a predicate D on f0; 1; : : : ; ng let ` 0 (D) = max f` j 1 ` n=2 ^ D(`) 6 D(` 1)g and ` 1 (D) = max fn ` j n=2 ` < n ^ D(`) 6 D(` + 1)g. Then the boundederror quantum communication complexity of f D (x; y) = D(jx \ yj) is equal (again, up to a logarithmic factor) to ` 1 (D). In particular, the complexity of the set disjointness predicate is n). This result holds both in the model with prior entanglement and without it.
Communication complexity lower bounds by polynomials
 In Proc. of the 16th Conf. on Computational Complexity (CCC
, 2001
"... The quantum version of communication complexity allows Alice and Bob to communicate qubits and/or to make use of prior entanglement (shared EPRpairs). Some lower bound techniques are available for qubit communication [17, 11, 2], but except for the inner product function [11], no bounds are known f ..."
Abstract

Cited by 61 (12 self)
 Add to MetaCart
The quantum version of communication complexity allows Alice and Bob to communicate qubits and/or to make use of prior entanglement (shared EPRpairs). Some lower bound techniques are available for qubit communication [17, 11, 2], but except for the inner product function [11], no bounds are known for the model with unlimited prior entanglement. We show that the “log rank ” lower bound extends to the strongest model (qubit communication + prior entanglement). By relating the rank of the communication matrix to properties of polynomials, we are able to derive some strong bounds for exact protocols. In particular, we prove both the “logrank conjecture ” and the polynomial equivalence of quantum and classical communication complexity for various classes of functions. We also derive some weaker bounds for boundederror protocols. 1
Quantum search of spatial regions
 THEORY OF COMPUTING
, 2005
"... Can Grover’s algorithm speed up search of a physical region—for example a 2D grid of size √ n × √ n? The problem is that √ n time seems to be needed for each query, just to move amplitude across the grid. Here we show that this problem can be surmounted, refuting a claim to the contrary by Beniof ..."
Abstract

Cited by 60 (9 self)
 Add to MetaCart
Can Grover’s algorithm speed up search of a physical region—for example a 2D grid of size √ n × √ n? The problem is that √ n time seems to be needed for each query, just to move amplitude across the grid. Here we show that this problem can be surmounted, refuting a claim to the contrary by Benioff. In particular, we show how to search a ddimensional hypercube in time O ( √ n) for d ≥ 3, or O ( √ nlog 5/2 n) for d = 2. More generally, we introduce a model of quantum query complexity on graphs, motivated by fundamental physical limits on information storage, particularly the holographic principle from black hole thermodynamics. Our results in this model include almosttight upper and lower bounds for many search tasks; a generalized algorithm that works for any graph with good expansion properties, not just hypercubes; and relationships among several notions of ‘locality’ for unitary matrices acting on graphs. As an application of our results, we give an O (√ n)qubit communication protocol for the disjointness problem, which improves an upper bound of Høyer and de Wolf and matches a lower bound of Razborov.
Quantum Lower Bound for the Collision Problem
, 2002
"... The collision problem is to decide whether a function X : . . . , n} is onetoone or twotoone, given that one of these is the case. We show a lower bound of on the number of queries needed by a quantum computer to solve this problem with bounded error probability. The best known upper bou ..."
Abstract

Cited by 59 (14 self)
 Add to MetaCart
The collision problem is to decide whether a function X : . . . , n} is onetoone or twotoone, given that one of these is the case. We show a lower bound of on the number of queries needed by a quantum computer to solve this problem with bounded error probability. The best known upper bound is O , but obtaining any lower bound better than# (1) was an open problem since 1997. Our proof uses the polynomial method augmented by some new ideas. We also give a lower bound for the problem of deciding whether two sets are equal or disjoint on a constant fraction of elements. Finally we give implications of these results for quantum complexity theory.
Quantum algorithms for the triangle problem
 PROCEEDINGS OF SODA’05
, 2005
"... We present two new quantum algorithms that either find a triangle (a copy of K3) in an undirected graph G on n nodes, or reject if G is triangle free. The first algorithm uses combinatorial ideas with Grover Search and makes Õ(n10/7) queries. The second algorithm uses Õ(n13/10) queries, and it is b ..."
Abstract

Cited by 59 (11 self)
 Add to MetaCart
We present two new quantum algorithms that either find a triangle (a copy of K3) in an undirected graph G on n nodes, or reject if G is triangle free. The first algorithm uses combinatorial ideas with Grover Search and makes Õ(n10/7) queries. The second algorithm uses Õ(n13/10) queries, and it is based on a design concept of Ambainis [6] that incorporates the benefits of quantum walks into Grover search [18]. The first algorithm uses only O(log n) qubits in its quantum subroutines, whereas the second one uses O(n) qubits. The Triangle Problem was first treated in [12], where an algorithm with O(n + √ nm) query complexity was presented, where m is the number of edges of G.
Quantum Algorithms for Element Distinctness
 SIAM Journal of Computing
, 2001
"... We present several applications of quantum amplitude amplification to finding claws and collisions in ordered or unordered functions. Our algorithms generalize those of Brassard, Høyer, and Tapp, and imply an O(N 3/4 log N) quantum upper bound for the element distinctness problem in the comparison c ..."
Abstract

Cited by 57 (11 self)
 Add to MetaCart
We present several applications of quantum amplitude amplification to finding claws and collisions in ordered or unordered functions. Our algorithms generalize those of Brassard, Høyer, and Tapp, and imply an O(N 3/4 log N) quantum upper bound for the element distinctness problem in the comparison complexity model. This contrasts with Θ(N log N) classical complexity. We also prove a lower bound of Ω ( √ N) comparisons for this problem and derive bounds for a number of related problems. 1
Polynomial degree vs. quantum query complexity
 Proceedings of FOCS’03
"... The degree of a polynomial representing (or approximating) a function f is a lower bound for the quantum query complexity of f. This observation has been a source of many lower bounds on quantum algorithms. It has been an open problem whether this lower bound is tight. We exhibit a function with pol ..."
Abstract

Cited by 56 (8 self)
 Add to MetaCart
The degree of a polynomial representing (or approximating) a function f is a lower bound for the quantum query complexity of f. This observation has been a source of many lower bounds on quantum algorithms. It has been an open problem whether this lower bound is tight. We exhibit a function with polynomial degree M and quantum query complexity Ω(M 1.321...). This is the first superlinear separation between polynomial degree and quantum query complexity. The lower bound is shown by a new, more general version of quantum adversary method. 1