Results 1  10
of
142
Extending and Implementing the Stable Model Semantics
, 2002
"... A novel logic program like language, weight constraint rules, is developed for answer set programming purposes. It generalizes normal logic programs by allowing weight constraints in place of literals to represent, e.g., cardinality and resource constraints and by providing optimization capabilities ..."
Abstract

Cited by 312 (5 self)
 Add to MetaCart
A novel logic program like language, weight constraint rules, is developed for answer set programming purposes. It generalizes normal logic programs by allowing weight constraints in place of literals to represent, e.g., cardinality and resource constraints and by providing optimization capabilities. A declarative semantics is developed which extends the stable model semantics of normal programs. The computational complexity of the language is shown to be similar to that of normal programs under the stable model semantics. A simple embedding of general weight constraint rules to a small subclass of the language called basic constraint rules is devised. An implementation of the language, the smodels system, is developed based on this embedding. It uses a two level architecture consisting of a frontend and a kernel language implementation. The frontend allows restricted use of variables and functions and compiles general weight constraint rules to basic constraint rules. A major part of the work is the development of an ecient search procedure for computing stable models for this kernel language. The procedure is compared with and empirically tested against satis ability checkers and an implementation of the stable model semantics. It offers a competitive implementation of the stable model semantics for normal programs and attractive performance for problems where the new types of rules provide a compact representation.
Valued constraint satisfaction problems: Hard and easy problems
 IJCAI’95: Proceedings International Joint Conference on Artificial Intelligence
, 1995
"... tschiexOtoulouse.inra.fr fargierOirit.fr verfailOcert.fr In order to deal with overconstrained Constraint Satisfaction Problems, various extensions of the CSP framework have been considered by taking into account costs, uncertainties, preferences, priorities...Each extension uses a specific mathema ..."
Abstract

Cited by 287 (40 self)
 Add to MetaCart
tschiexOtoulouse.inra.fr fargierOirit.fr verfailOcert.fr In order to deal with overconstrained Constraint Satisfaction Problems, various extensions of the CSP framework have been considered by taking into account costs, uncertainties, preferences, priorities...Each extension uses a specific mathematical operator (+, max...) to aggregate constraint violations. In this paper, we consider a simple algebraic framework, related to Partial Constraint Satisfaction, which subsumes most of these proposals and use it to characterize existing proposals in terms of rationality and computational complexity. We exhibit simple relationships between these proposals, try to
The NPcompleteness column: an ongoing guide
 Journal of Algorithms
, 1985
"... This is the nineteenth edition of a (usually) quarterly column that covers new developments in the theory of NPcompleteness. The presentation is modeled on that used by M. R. Garey and myself in our book ‘‘Computers and Intractability: A Guide to the Theory of NPCompleteness,’ ’ W. H. Freeman & Co ..."
Abstract

Cited by 188 (0 self)
 Add to MetaCart
This is the nineteenth edition of a (usually) quarterly column that covers new developments in the theory of NPcompleteness. The presentation is modeled on that used by M. R. Garey and myself in our book ‘‘Computers and Intractability: A Guide to the Theory of NPCompleteness,’ ’ W. H. Freeman & Co., New York, 1979 (hereinafter referred to as ‘‘[G&J]’’; previous columns will be referred to by their dates). A background equivalent to that provided by [G&J] is assumed, and, when appropriate, crossreferences will be given to that book and the list of problems (NPcomplete and harder) presented there. Readers who have results they would like mentioned (NPhardness, PSPACEhardness, polynomialtimesolvability, etc.) or open problems they would like publicized, should
On the Complexity of Propositional Knowledge Base Revision, Updates, and Counterfactuals
 ARTIFICIAL INTELLIGENCE
, 1992
"... We study the complexity of several recently proposed methods for updating or revising propositional knowledge bases. In particular, we derive complexity results for the following problem: given a knowledge base T , an update p, and a formula q, decide whether q is derivable from T p, the updated (or ..."
Abstract

Cited by 186 (12 self)
 Add to MetaCart
We study the complexity of several recently proposed methods for updating or revising propositional knowledge bases. In particular, we derive complexity results for the following problem: given a knowledge base T , an update p, and a formula q, decide whether q is derivable from T p, the updated (or revised) knowledge base. This problem amounts to evaluating the counterfactual p > q over T . Besides the general case, also subcases are considered, in particular where T is a conjunction of Horn clauses, or where the size of p is bounded by a constant.
The Complexity of LogicBased Abduction
, 1993
"... Abduction is an important form of nonmonotonic reasoning allowing one to find explanations for certain symptoms or manifestations. When the application domain is described by a logical theory, we speak about logicbased abduction. Candidates for abductive explanations are usually subjected to minima ..."
Abstract

Cited by 163 (26 self)
 Add to MetaCart
Abduction is an important form of nonmonotonic reasoning allowing one to find explanations for certain symptoms or manifestations. When the application domain is described by a logical theory, we speak about logicbased abduction. Candidates for abductive explanations are usually subjected to minimality criteria such as subsetminimality, minimal cardinality, minimal weight, or minimality under prioritization of individual hypotheses. This paper presents a comprehensive complexity analysis of relevant decision and search problems related to abduction on propositional theories. Our results indicate that abduction is harder than deduction. In particular, we show that with the most basic forms of abduction the relevant decision problems are complete for complexity classes at the second level of the polynomial hierarchy, while the use of prioritization raises the complexity to the third level in certain cases.
Semiringbased CSPs and Valued CSPs: Frameworks, Properties, and Comparison
 Constraints
, 1999
"... In this paper we describe and compare two frameworks for constraint solving where classical CSPs, fuzzy CSPs, weighted CSPs, partial constraint satisfaction, and others can be easily cast. One is based on a semiring, and the other one on a totally ordered commutative monoid. While comparing the two ..."
Abstract

Cited by 102 (27 self)
 Add to MetaCart
In this paper we describe and compare two frameworks for constraint solving where classical CSPs, fuzzy CSPs, weighted CSPs, partial constraint satisfaction, and others can be easily cast. One is based on a semiring, and the other one on a totally ordered commutative monoid. While comparing the two approaches, we show how to pass from one to the other one, and we discuss when this is possible. The two frameworks have been independently introduced in [2], [3] and [35].
Propositional Circumscription and Extended Closed World Reasoning are $\Pi^P_2$complete
 Theoretical Computer Science
, 1993
"... Circumscription and the closed world assumption with its variants are wellknown nonmonotonic techniques for reasoning with incomplete knowledge. Their complexity in the propositional case has been studied in detail for fragments of propositional logic. One open problem is whether the deduction prob ..."
Abstract

Cited by 99 (22 self)
 Add to MetaCart
Circumscription and the closed world assumption with its variants are wellknown nonmonotonic techniques for reasoning with incomplete knowledge. Their complexity in the propositional case has been studied in detail for fragments of propositional logic. One open problem is whether the deduction problem for arbitrary propositional theories under the extended closed world assumption or under circumscription is $\Pi^P_2$complete, i.e., complete for a class of the second level of the polynomial hierarchy. We answer this question by proving these problems $\Pi^P_2$complete, and we show how this result applies to other variants of closed world reasoning.
PP is Closed Under Intersection
 Journal of Computer and System Sciences
, 1991
"... In his seminal paper on probabilistic Turing machines, Gill [13] asked whether the class PP is closed under intersection and union. We give a positive answer to this question. We also show that PP is closed under a variety of polynomialtime truthtable reductions. Consequences in complexity theory ..."
Abstract

Cited by 89 (9 self)
 Add to MetaCart
In his seminal paper on probabilistic Turing machines, Gill [13] asked whether the class PP is closed under intersection and union. We give a positive answer to this question. We also show that PP is closed under a variety of polynomialtime truthtable reductions. Consequences in complexity theory include the definite collapse and (assuming P<F NaN> 6= PP) separation of certain query hierarchies over PP. Similar techniques allow us to combine several threshold gates into a single threshold gate. Consequences in the study of circuits include the simulation of circuits with a small number of threshold gates by circuits having only a single threshold gate at the root (perceptrons), and a lower bound on the number of threshold gates needed to compute the parity function. 1. Introduction The class PP was defined in 1972 by John Gill [13, 14] and independently by Janos Simon [26] in 1974. PP is the class of languages accepted by a polynomialtime bounded nondeterministic Turing machine t...
A Taxonomy of Complexity Classes of Functions
 Journal of Computer and System Sciences
, 1992
"... This paper comprises a systematic comparison of several complexity classes of functions that are computed nondeterministically in polynomial time or with an oracle in NP. There are three components to this work. ffl A taxonomy is presented that demonstrates all known inclusion relations of these cla ..."
Abstract

Cited by 88 (12 self)
 Add to MetaCart
This paper comprises a systematic comparison of several complexity classes of functions that are computed nondeterministically in polynomial time or with an oracle in NP. There are three components to this work. ffl A taxonomy is presented that demonstrates all known inclusion relations of these classes. For (nearly) each inclusion that is not shown to hold, evidence is presented to indicate that the inclusion is false. As an example, consider FewPF, the class of multivalued functions that are nondeterministically computable in polynomial time such that for each x, there is a polynomial bound on the number of distinct output values of f(x). We show that FewPF ` PF NP tt . However, we show PF NP tt ` FewPF if and only if NP = coNP, and thus PF NP tt ` FewPF is likely to be false. ffl Whereas it is known that P NP (O(log n)) = P NP tt ` P NP [Hem87, Wagb, BH88], we show that PF NP (O(log n)) = PF NP tt implies P = FewP and R = NP. Also, we show that PF NP tt = PF ...