Results 1  10
of
121
An Optimal Algorithm for Approximate Nearest Neighbor Searching in Fixed Dimensions
 ACMSIAM SYMPOSIUM ON DISCRETE ALGORITHMS
, 1994
"... Consider a set S of n data points in real ddimensional space, R d , where distances are measured using any Minkowski metric. In nearest neighbor searching we preprocess S into a data structure, so that given any query point q 2 R d , the closest point of S to q can be reported quickly. Given any po ..."
Abstract

Cited by 786 (31 self)
 Add to MetaCart
Consider a set S of n data points in real ddimensional space, R d , where distances are measured using any Minkowski metric. In nearest neighbor searching we preprocess S into a data structure, so that given any query point q 2 R d , the closest point of S to q can be reported quickly. Given any positive real ffl, a data point p is a (1 + ffl)approximate nearest neighbor of q if its distance from q is within a factor of (1 + ffl) of the distance to the true nearest neighbor. We show that it is possible to preprocess a set of n points in R d in O(dn log n) time and O(dn) space, so that given a query point q 2 R d , and ffl ? 0, a (1 + ffl)approximate nearest neighbor of q can be computed in O(c d;ffl log n) time, where c d;ffl d d1 + 6d=ffle d is a factor depending only on dimension and ffl. In general, we show that given an integer k 1, (1 + ffl)approximations to the k nearest neighbors of q can be computed in additional O(kd log n) time.
Complexity and Approximation
, 1999
"... Abstract. In this survey the following model is considered. We assume that an instance I of a computationally hard optimization problem has been solved and that we know the optimum solution of such instance. Then a new instance I ′ is proposed, obtained by means of a slight perturbation of instance ..."
Abstract

Cited by 176 (1 self)
 Add to MetaCart
Abstract. In this survey the following model is considered. We assume that an instance I of a computationally hard optimization problem has been solved and that we know the optimum solution of such instance. Then a new instance I ′ is proposed, obtained by means of a slight perturbation of instance I. How can we exploit the knowledge we have on the solution of instance I to compute a (approximate) solution of instance I ′ in an efficient way? This computation model is called reoptimization and is of practical interest in various circumstances. In this article we first discuss what kind of performance we can expect for specific classes of problems and then we present some classical optimization problems (i.e. Max Knapsack, Min Steiner Tree, Scheduling) in which this approach has been fruitfully applied. Subsequently, we address vehicle routing problems and we show how the reoptimization approach can be used to obtain good approximate solution in an efficient way for some of these problems. 1
Faster ShortestPath Algorithms for Planar Graphs
 STOC 94
, 1994
"... We give a lineartime algorithm for singlesource shortest paths in planar graphs with nonnegative edgelengths. Our algorithm also yields a lineartime algorithm for maximum flow in a planar graph with the source and sink on the same face. The previous best algorithms for these problems required\O ..."
Abstract

Cited by 167 (14 self)
 Add to MetaCart
We give a lineartime algorithm for singlesource shortest paths in planar graphs with nonnegative edgelengths. Our algorithm also yields a lineartime algorithm for maximum flow in a planar graph with the source and sink on the same face. The previous best algorithms for these problems required\Omega\Gamma n p log n) time where n is the number of nodes in the input graph. For the case where negative edgelengths are allowed, we give an algorithm requiring O(n 4=3 log nL) time, where L is the absolute value of the most negative length. Previous algorithms for shortest paths with negative edgelengths required \Omega\Gamma n 3=2 ) time. Our shortestpath algorithm yields an O(n 4=3 log n)time algorithm for finding a perfect matching in a planar bipartite graph. A similar improvement is obtained for maximum flow in a directed planar graph.
Polylogarithmic deterministic fullydynamic graph algorithms I: connectivity and minimum spanning tree
 JOURNAL OF THE ACM
, 1997
"... Deterministic fully dynamic graph algorithms are presented for connectivity and minimum spanning forest. For connectivity, starting with no edges, the amortized cost for maintaining a spanning forest is O(log² n) per update, i.e. per edge insertion or deletion. Deciding connectivity between any two ..."
Abstract

Cited by 125 (6 self)
 Add to MetaCart
Deterministic fully dynamic graph algorithms are presented for connectivity and minimum spanning forest. For connectivity, starting with no edges, the amortized cost for maintaining a spanning forest is O(log² n) per update, i.e. per edge insertion or deletion. Deciding connectivity between any two given vertices is done in O(log n= log log n) time. This matches the previous best randomized bounds. The previous best deterministic bound was O( 3 p n log n) amortized time per update but constant time for connectivity queries. For minimum spanning trees, first a deletionsonly algorithm is presented supporting deletes in amortized time O(log² n). Applying a general reduction from Henzinger and King, we then get a fully dynamic algorithm such that starting with no edges, the amortized cost for maintaining a minimum spanning forest is O(log^4 n) per update. The previous best deterministic bound was O( 3 p n log n) amortized time per update, and no better randomized bounds were ...
A Replacement for Voronoi Diagrams of Near Linear Size
 In Proc. 42nd Annu. IEEE Sympos. Found. Comput. Sci
, 2001
"... For a set P of n points in R^d, we define a new type of space decomposition. The new diagram provides an εapproximation to the distance function associated with the Voronoi diagram of P, while being of near linear size, for d ≥ 2. This contrasts with the standard Voronoi diagram that has ..."
Abstract

Cited by 87 (6 self)
 Add to MetaCart
For a set P of n points in R^d, we define a new type of space decomposition. The new diagram provides an εapproximation to the distance function associated with the Voronoi diagram of P, while being of near linear size, for d ≥ 2. This contrasts with the standard Voronoi diagram that has complexity Ω(n^⌈d/2⌉) in the worst case.
Ambivalent Data Structures For Dynamic 2EdgeConnectivity And k Smallest Spanning Trees
 SIAM J. Comput
, 1991
"... . Ambivalent data structures are presented for several problems on undirected graphs. These data structures are used in finding the k smallest spanning trees of a weighted undirected graph in O(m log #(m, n) + min{k 3/2 ,km 1/2 }) time, where m is the number of edges and n the number of vertice ..."
Abstract

Cited by 83 (1 self)
 Add to MetaCart
. Ambivalent data structures are presented for several problems on undirected graphs. These data structures are used in finding the k smallest spanning trees of a weighted undirected graph in O(m log #(m, n) + min{k 3/2 ,km 1/2 }) time, where m is the number of edges and n the number of vertices in the graph. The techniques are extended to find the k smallest spanning trees in an embedded planar graph in O(n + k(log n) 3 ) time. Ambivalent data structures are also used to dynamically maintain 2edgeconnectivity information. Edges and vertices can be inserted or deleted in O(m 1/2 ) time, and a query as to whether two vertices are in the same 2edgeconnected component can be answered in O(log n) time, where m and n are understood to be the current number of edges and vertices, respectively. Key words. analysis of algorithms, data structures, embedded planar graph, fully persistent data structures, k smallest spanning trees, minimum spanning tree, online updating, topology tr...
Maintenance of a Minimum Spanning Forest in a Dynamic Plane Graph
, 1992
"... We give an efficient algorithm for maintaining a minimum spanning forest of a plane graph subject to online modifications. The modifications supported include changes in the edge weights, and insertion and deletion of edges and vertices which are consistent with the given embedding. Our algorithm r ..."
Abstract

Cited by 68 (26 self)
 Add to MetaCart
We give an efficient algorithm for maintaining a minimum spanning forest of a plane graph subject to online modifications. The modifications supported include changes in the edge weights, and insertion and deletion of edges and vertices which are consistent with the given embedding. Our algorithm runs in O(log n) time per operation and O(n) space.
Optimal preprocessing for answering online product queries
, 1987
"... We examine the amount of preprocessing needed for answering certain online queries as fast as possible. We start with the following basic problem. Suppose we are given a semigroup (S,°). Let s 1,..., sn be elements of S. We want to answer online queries of the form, "What is the product s i°s ..."
Abstract

Cited by 56 (3 self)
 Add to MetaCart
We examine the amount of preprocessing needed for answering certain online queries as fast as possible. We start with the following basic problem. Suppose we are given a semigroup (S,°). Let s 1,..., sn be elements of S. We want to answer online queries of the form, "What is the product s i°s i +1 ° j −1 j n 1... °s °s? " for any give ≤ i ≤ j ≤ n. We show that a preprocessing of Θ(n λ(k,n)) time and space is both necessary and sufficient to answer each such query in at most k steps, for any fixed k. The function λ(k,.) is the inverse of a certain function at the �k /2 �−th level of the primitive recursive hierarchy. In case linear preprocessing is desired, we show that one can answer each such query in at most O (α(n)) steps and that this is best possible. The function α(n) is the inverse Ackermann function. We also consider the following extended problem. Let T be a tree with an element of S associated with each of its vertices. We want to answer online queries of the form, " What is the product of the elements associated with the vertices along the path from u to v? " for any pair of vertices u and v in T. We derive results, which are similar to the above, for the preprocessing needed for answering such queries. All our sequential preprocessing algorithms can be parallelized efficiently to give optimal parallel algorithms which run in O (logn) time on a CREW PRAM. These parallel algorithms are optimal in both running time and total number of operations.
Dynamic Graph Algorithms
, 1999
"... Introduction In many applications of graph algorithms, including communication networks, graphics, assembly planning, and VLSI design, graphs are subject to discrete changes, such as additions or deletions of edges or vertices. In the last decade there has been a growing interest in such dynamicall ..."
Abstract

Cited by 55 (0 self)
 Add to MetaCart
Introduction In many applications of graph algorithms, including communication networks, graphics, assembly planning, and VLSI design, graphs are subject to discrete changes, such as additions or deletions of edges or vertices. In the last decade there has been a growing interest in such dynamically changing graphs, and a whole body of algorithms and data structures for dynamic graphs has been discovered. This chapter is intended as an overview of this field. In a typical dynamic graph problem one would like to answer queries on graphs that are undergoing a sequence of updates, for instance, insertions and deletions of edges and vertices. The goal of a dynamic graph algorithm is to update efficiently the solution of a problem after dynamic changes, rather than having to recompute it from scratch each time. Given their powerful versatility, it is not surprising that dynamic algorithms and dynamic data structures are often more difficult to design and analyze than their static c
Randomized Fully Dynamic Graph Algorithms with Polylogarithmic Time per Operation
 JOURNAL OF THE ACM
, 1999
"... This paper solves a longstanding open problem in fully dynamic algorithms: We present the first fully dynamic algorithms that maintain connectivity, bipartiteness, and approximate minimum spanning trees in polylogarithmic time per edge insertion or deletion. The algorithms are designed using a new d ..."
Abstract

Cited by 54 (0 self)
 Add to MetaCart
This paper solves a longstanding open problem in fully dynamic algorithms: We present the first fully dynamic algorithms that maintain connectivity, bipartiteness, and approximate minimum spanning trees in polylogarithmic time per edge insertion or deletion. The algorithms are designed using a new dynamic technique which combines a novel graph decomposition with randomization. They are LasVegas type randomized algorithms which use simple data structures and have a small constant factor. Let n denote the number of nodes in the graph. For a sequence of \Omega\Gamma m 0 ) operations, where m 0 is the number of edges in the initial graph, the expected time for p updates is O(p log 3 n) 1 for connectivity and bipartiteness. The worstcase time for one query is O(log n= log log n). For the kedge witness problem ("Does the removal of k given edges disconnect the graph?") the expected time for p updates is O(p log 3 n) and expected time for q queries is O(qk log 3 n). Given a grap...