Results 1  10
of
91
E  A Brainiac Theorem Prover
, 2002
"... We describe the superpositionbased theorem prover E. E is a sound and complete... ..."
Abstract

Cited by 126 (18 self)
 Add to MetaCart
We describe the superpositionbased theorem prover E. E is a sound and complete...
Compiling and Verifying Security Protocols
, 2000
"... We propose a direct and fully automated translation from standard security protocol descriptions to rewrite rules. This compilation defines nonambiguous operational semantics for protocols and intruder behavior: they are rewrite systems executed by applying a variant of acnarrowing. The rewrite ru ..."
Abstract

Cited by 54 (6 self)
 Add to MetaCart
We propose a direct and fully automated translation from standard security protocol descriptions to rewrite rules. This compilation defines nonambiguous operational semantics for protocols and intruder behavior: they are rewrite systems executed by applying a variant of acnarrowing. The rewrite rules are processed by the theoremprover daTac. Multiple instances of a protocol can be run simultaneously as well as a model of the intruder (among several possible). The existence of flaws in the protocol is revealed by the derivation of an inconsistency. Our implementation of the compiler CASRUL, together with the prover daTac, permitted us to derive security flaws in many classical cryptographic protocols.
LightWeight Theorem Proving for Debugging and Verifying Units of Code
, 2003
"... Software bugs are very difficult to detect even in small units of code. Several techniques to debug or prove correct such units are based on the generation of a set of formulae whose unsatisfiability reveals the presence of an error. These techniques assume the availability of a theorem prover capab ..."
Abstract

Cited by 47 (25 self)
 Add to MetaCart
Software bugs are very difficult to detect even in small units of code. Several techniques to debug or prove correct such units are based on the generation of a set of formulae whose unsatisfiability reveals the presence of an error. These techniques assume the availability of a theorem prover capable of automatically discharging the resulting proof obligations. Building such a tool is a difficult, long, and errorprone activity. In this paper, we describe techniques to build provers which are highly automatic and flexible by combining stateoftheart superposition theorem provers and BDDs. We report experimental results on formulae extracted from the debugging of C functions manipulating pointers showing that an implementation of our techniques can discharge proof obligations which cannot be handled by Simplify (the theorem prover used in the ESC/Java tool) and performs much better on others. 1.
ModelTheoretic Methods in Combined Constraint Satisfiability
 Journal of Automated Reasoning
, 2004
"... We extend NelsonOppen combination procedure to the case of theories which are compatible with respect to a common subtheory in the shared signature. The notion of compatibility relies on model completions and related concepts from classical model theory. ..."
Abstract

Cited by 40 (10 self)
 Add to MetaCart
We extend NelsonOppen combination procedure to the case of theories which are compatible with respect to a common subtheory in the shared signature. The notion of compatibility relies on model completions and related concepts from classical model theory.
Modular Data Structure Verification
 EECS DEPARTMENT, MASSACHUSETTS INSTITUTE OF TECHNOLOGY
, 2007
"... This dissertation describes an approach for automatically verifying data structures, focusing on techniques for automatically proving formulas that arise in such verification. I have implemented this approach with my colleagues in a verification system called Jahob. Jahob verifies properties of Java ..."
Abstract

Cited by 36 (21 self)
 Add to MetaCart
This dissertation describes an approach for automatically verifying data structures, focusing on techniques for automatically proving formulas that arise in such verification. I have implemented this approach with my colleagues in a verification system called Jahob. Jahob verifies properties of Java programs with dynamically allocated data structures. Developers write Jahob specifications in classical higherorder logic (HOL); Jahob reduces the verification problem to deciding the validity of HOL formulas. I present a new method for proving HOL formulas by combining automated reasoning techniques. My method consists of 1) splitting formulas into individual HOL conjuncts, 2) soundly approximating each HOL conjunct with a formula in a more tractable fragment and 3) proving the resulting approximation using a decision procedure or a theorem prover. I present three concrete logics; for each logic I show how to use it to approximate HOL formulas, and how to decide the validity of formulas in this logic. First, I present an approximation of HOL based on a translation to firstorder logic, which enables the use of existing resolutionbased theorem provers. Second, I present an approximation of HOL based on field constraint analysis, a new technique that enables
A Decomposition Rule for Decision Procedures by Resolutionbased Calculi
 In: Proc. 11th Int. Conf. on Logic for Programming, Artificial Intelligence, and Reasoning (LPAR
, 2004
"... Abstract. Resolutionbased calculi are among the most widely used calculi for theorem proving in firstorder logic. Numerous refinements of resolution are nowadays available, such as e.g. basic superposition, a calculus highly optimized for theorem proving with equality. However, even such an advanc ..."
Abstract

Cited by 31 (10 self)
 Add to MetaCart
Abstract. Resolutionbased calculi are among the most widely used calculi for theorem proving in firstorder logic. Numerous refinements of resolution are nowadays available, such as e.g. basic superposition, a calculus highly optimized for theorem proving with equality. However, even such an advanced calculus does not restrict inferences enough to obtain decision procedures for complex logics, such as SHIQ. In this paper, we present a new decomposition inference rule, which can be combined with any resolutionbased calculus compatible with the standard notion of redundancy. We combine decomposition with basic superposition to obtain three new decision procedures: (i) for the description logic SHIQ, (ii) for the description logic ALCHIQb, and (iii) for answering conjunctive queries over SHIQ knowledge bases. The first two procedures are worstcase optimal and, based on the vast experience in building efficient theorem provers, we expect them to be suitable for practical usage. 1
On a Rewriting Approach to Satisfiability Procedures: Extension, Combination of Theories and an Experimental Appraisal
, 2005
"... The rewriting approach to Tsatisfiability is based on establishing termination of a rewritebased inference system for firstorder logic on the Tsatisfiability problem. Extending previous such results, including the quantifierfree theory of equality and the theory of arrays with or without exte ..."
Abstract

Cited by 30 (19 self)
 Add to MetaCart
The rewriting approach to Tsatisfiability is based on establishing termination of a rewritebased inference system for firstorder logic on the Tsatisfiability problem. Extending previous such results, including the quantifierfree theory of equality and the theory of arrays with or without extensionality, we prove termination for the theories of records with or without extensionality, integer offsets and integer offsets modulo. A general theorem for termination on combinations of theories, that covers any combination of the theories above, is given next. For empirical evaluation, the rewritebased theorem prover E is compared with the validity checkers CVC and CVC Lite, on both synthetic and realworld benchmarks, including both valid and invalid instances. Parametric synthetic benchmarks test scalability, while realworld benchmarks test ability to handle huge sets of literals. Contrary to the folklore that a generalpurpose prover cannot compete with specialized reasoners, the experiments are overall favorable to the theorem prover, showing that the rewriting approach is both elegant and practical.
Incremental closure of free variable tableaux
 Proc. Intl. Joint Conf. on Automated Reasoning IJCAR
, 2001
"... Abstract. This paper presents a technique for automated theorem proving with free variable tableaux that does not require backtracking. Most existing automated proof procedures using free variable tableaux require iterative deepening and backtracking over applied instantiations to guarantee complete ..."
Abstract

Cited by 30 (4 self)
 Add to MetaCart
Abstract. This paper presents a technique for automated theorem proving with free variable tableaux that does not require backtracking. Most existing automated proof procedures using free variable tableaux require iterative deepening and backtracking over applied instantiations to guarantee completeness. If the correct instantiation is hard to find, this can lead to a significant amount of duplicated work. Incremental Closure is a way of organizing the search for closing instantiations that avoids this inefficiency. 1
Using Vampire to reason with OWL
 In Proc. of the 2004 International Semantic Web Conference (ISWC
, 2004
"... Abstract. OWL DL corresponds to a Description Logic (DL) that is a fragment of classical firstorder predicate logic (FOL). Therefore, the standard methods of automated reasoning for full FOL can potentially be used instead of dedicated DL reasoners to solve OWL DL reasoning tasks. In this paper we ..."
Abstract

Cited by 28 (1 self)
 Add to MetaCart
Abstract. OWL DL corresponds to a Description Logic (DL) that is a fragment of classical firstorder predicate logic (FOL). Therefore, the standard methods of automated reasoning for full FOL can potentially be used instead of dedicated DL reasoners to solve OWL DL reasoning tasks. In this paper we report on some experiments designed to explore the feasibility of using existing generalpurpose FOL provers to reason with OWL DL. We also extend our approach to SWRL, a proposed rule language extension to OWL. 1