Results 11  20
of
156
Feature Logics
 HANDBOOK OF LOGIC AND LANGUAGE, EDITED BY VAN BENTHEM & TER MEULEN
, 1994
"... Feature logics form a class of specialized logics which have proven especially useful in classifying and constraining the linguistic objects known as feature structures. Linguistically, these structures have their origin in the work of the Prague school of linguistics, followed by the work of Chom ..."
Abstract

Cited by 33 (0 self)
 Add to MetaCart
Feature logics form a class of specialized logics which have proven especially useful in classifying and constraining the linguistic objects known as feature structures. Linguistically, these structures have their origin in the work of the Prague school of linguistics, followed by the work of Chomsky and Halle in The Sound Pattern of English [16]. Feature structures have been reinvented several times by computer scientists: in the theory of data structures, where they are known as record structures, in artificial intelligence, where they are known as frame or slotvalue structures, in the theory of data bases, where they are called "complex objects", and in computati
A Compositional Logic for Polymorphic HigherOrder Functions
 PPDP'04
, 2004
"... This paper introduces a compositional program logic for higherorder polymorphic functions and standard data types. The logic enables us to reason about observable properties of polymorphic programs starting from those of their constituents. Just as types attached to programs offer information on the ..."
Abstract

Cited by 26 (11 self)
 Add to MetaCart
This paper introduces a compositional program logic for higherorder polymorphic functions and standard data types. The logic enables us to reason about observable properties of polymorphic programs starting from those of their constituents. Just as types attached to programs offer information on their composability so as to guarantee basic safety of composite programs, formulae of the proposed logic attached to programs offer information on their composability so as to guarantee finegrained behavioural properties of polymorphic programs. The central feature of the logic is a systematic usage of names and operations on them, whose origin is in the logics for typed πcalculi. The paper introduces the program logic and its proof rules and illustrates their usage by nontrivial reasoning examples, taking a prototypical callbyvalue functional language with impredicative polymorphism and recursive types as a target language.
Topological Incompleteness and Order Incompleteness of the Lambda Calculus
 ACM TRANSACTIONS ON COMPUTATIONAL LOGIC
, 2001
"... A model of the untyped lambda calculus induces a lambda theory, i.e., a congruence relation on λterms closed under ff and ficonversion. A semantics (= class of models) of the lambda calculus is incomplete if there exists a lambda theory which is not induced by any model in the semantics. In th ..."
Abstract

Cited by 23 (15 self)
 Add to MetaCart
A model of the untyped lambda calculus induces a lambda theory, i.e., a congruence relation on λterms closed under ff and ficonversion. A semantics (= class of models) of the lambda calculus is incomplete if there exists a lambda theory which is not induced by any model in the semantics. In this paper we introduce a new technique to prove the incompleteness of a wide range of lambda calculus semantics, including the strongly stable one, whose incompleteness had been conjectured by BastoneroGouy [6, 7] and by Berline [9]. The main results of the paper are a topological incompleteness theorem and an order incompleteness theorem. In the first one we show the incompleteness of the lambda calculus semantics given in terms of topological models whose topology satisfies a property of connectedness. In the second one we prove the incompleteness of the class of partially ordered models with finitely many connected components w.r.t. the Alexandroff topology. A further result of the paper is a proof of the completeness of the semantics of the lambda calculus given in terms of topological models whose topology is nontrivial and metrizable.
Specification Structures and PropositionsasTypes for Concurrency
 Logics for Concurrency: Structure vs. AutomataProceedings of the VIIIth Banff Higher Order Workshop, volume 1043 of Lecture Notes in Computer Science
, 1995
"... Many different notions of "property of interest" and methods of verifying such properties arise naturally in programming. A general framework of "Specification Structures" is presented for combining different notions and methods in a coherent fashion. This is then applied to concurrency in the se ..."
Abstract

Cited by 21 (5 self)
 Add to MetaCart
Many different notions of "property of interest" and methods of verifying such properties arise naturally in programming. A general framework of "Specification Structures" is presented for combining different notions and methods in a coherent fashion. This is then applied to concurrency in the setting of Interaction Categories.
A Fully Abstract Semantics for a Concurrent Functional Language With Monadic Types
, 1995
"... This paper presents a typed higherorder concurrent functional programming language, based on Moggi's monadic metalanguage and Reppy's Concurrent ML. We present an operational semantics for the language, and show that a higherorder variant of the traces model is fully abstract for maytesting. This p ..."
Abstract

Cited by 21 (4 self)
 Add to MetaCart
This paper presents a typed higherorder concurrent functional programming language, based on Moggi's monadic metalanguage and Reppy's Concurrent ML. We present an operational semantics for the language, and show that a higherorder variant of the traces model is fully abstract for maytesting. This proof uses a program logic based on HennessyMilner logic and Abramsky's domain theory in logical form.
A Cook’s tour of the finitary nonwellfounded sets
 Invited Lecture at BCTCS
, 1988
"... It is a great pleasure to contribute this paper to a birthday volume for Dov. Dov and I arrived at imperial College at around the same time, and soon he, Tom Maibaum and I were embarked on a joint project, the Handbook of Logic in Computer Science. We obtained a generous advance from Oxford Universi ..."
Abstract

Cited by 21 (0 self)
 Add to MetaCart
It is a great pleasure to contribute this paper to a birthday volume for Dov. Dov and I arrived at imperial College at around the same time, and soon he, Tom Maibaum and I were embarked on a joint project, the Handbook of Logic in Computer Science. We obtained a generous advance from Oxford University Press, and a grant from the Alvey Programme, which allowed us to develop the Handbook in a rather unique, interactive way. We held regular meetings at Cosener’s House in Abingdon (a facility run by what was then the U.K. Science and Engineering Research Council), at which contributors would present their ideas and draft material for their chapters for discussion and criticism. Ideas for new chapters and the balance of the volumes were also discussed. Those were a remarkable series of meetings — a veritable education in themselves. I must confess that during this long process, I did occasionally wonder if it would ever terminate.... But the record shows that five handsome volumes were produced [6]. Moreover, I believe that the Handbook has proved to be a really valuable resource for students and researchers. It has been used as the basis for a number of summer schools. Many of the chapters have become standard references for their topics. In a field with rapidly changing fashions, most of the material has stood the test of time — thus
Graph lambda theories
 Journal of Logic and Computation
, 2004
"... Lambda theories are equational extensions of the untyped lambda calculus that are closed under derivation. The set of lambda theories is naturally equipped with a structure of complete lattice, where the meet of a family of lambda theories is their intersection, and the join is the least lambda theo ..."
Abstract

Cited by 19 (11 self)
 Add to MetaCart
Lambda theories are equational extensions of the untyped lambda calculus that are closed under derivation. The set of lambda theories is naturally equipped with a structure of complete lattice, where the meet of a family of lambda theories is their intersection, and the join is the least lambda theory containing their union. In this paper we study the structure of the lattice of lambda theories by universal algebraic methods. We show that nontrivial quasiidentities in the language of lattices hold in the lattice of lambda theories, while every nontrivial lattice identity fails in the lattice of lambda theories if the language of lambda calculus is enriched by a suitable finite number of constants. We also show that there exists a sublattice of the lattice of lambda theories which satisfies: (i) a restricted form of distributivity, called meet semidistributivity; and (ii) a nontrivial identity in the language of lattices enriched by the relative product of binary relations.
Topical Categories of Domains
, 1997
"... this paper are algebraic dcpos, and many of the points discussed here will be needed later in the special case. 2 They provide a simple example to illustrate the "Display categories" in Section 3.2 ..."
Abstract

Cited by 19 (18 self)
 Add to MetaCart
this paper are algebraic dcpos, and many of the points discussed here will be needed later in the special case. 2 They provide a simple example to illustrate the "Display categories" in Section 3.2
Entailment Relations and Distributive Lattices
, 1998
"... . To any entailment relation [Sco74] we associate a distributive lattice. We use this to give a construction of the product of lattices over an arbitrary index set, of the Vietoris construction, of the embedding of a distributive lattice in a boolean algebra, and to give a logical description of ..."
Abstract

Cited by 18 (4 self)
 Add to MetaCart
. To any entailment relation [Sco74] we associate a distributive lattice. We use this to give a construction of the product of lattices over an arbitrary index set, of the Vietoris construction, of the embedding of a distributive lattice in a boolean algebra, and to give a logical description of some spaces associated to mathematical structures. 1 Introduction Most spaces associated to mathematical structures: spectrum of a ring, space of valuations of a field, space of bounded linear functionals, . . . can be represented as distributive lattices. The key to have a natural definition in these cases is to use the notion of entailment relation due to Dana Scott. This note explains the connection between entailment relations and distributive lattices. An entailment relation may be seen as a logical description of a distributive lattice. Furthermore, most operations on distributive lattices are simpler when formulated as operations on entailment relations. A special kind of distribu...