Results 1  10
of
452
Making LargeScale SVM Learning Practical
, 1998
"... Training a support vector machine (SVM) leads to a quadratic optimization problem with bound constraints and one linear equality constraint. Despite the fact that this type of problem is well understood, there are many issues to be considered in designing an SVM learner. In particular, for large lea ..."
Abstract

Cited by 1848 (17 self)
 Add to MetaCart
Training a support vector machine (SVM) leads to a quadratic optimization problem with bound constraints and one linear equality constraint. Despite the fact that this type of problem is well understood, there are many issues to be considered in designing an SVM learner. In particular, for large learning tasks with many training examples, offtheshelf optimization techniques for general quadratic programs quickly become intractable in their memory and time requirements. SV M light1 is an implementation of an SVM learner which addresses the problem of large tasks. This chapter presents algorithmic and computational results developed for SV M light V2.0, which make largescale SVM training more practical. The results give guidelines for the application of SVMs to large domains.
Probabilistic Outputs for Support Vector Machines and Comparisons to Regularized Likelihood Methods
 ADVANCES IN LARGE MARGIN CLASSIFIERS
, 1999
"... The output of a classifier should be a calibrated posterior probability to enable postprocessing. Standard SVMs do not provide such probabilities. One method to create probabilities is to directly train a kernel classifier with a logit link function and a regularized maximum likelihood score. Howev ..."
Abstract

Cited by 1043 (0 self)
 Add to MetaCart
(Show Context)
The output of a classifier should be a calibrated posterior probability to enable postprocessing. Standard SVMs do not provide such probabilities. One method to create probabilities is to directly train a kernel classifier with a logit link function and a regularized maximum likelihood score. However, training with a maximum likelihood score will produce nonsparse kernel machines. Instead, we train an SVM, then train the parameters of an additional sigmoid function to map the SVM outputs into probabilities. This chapter compares classification error rate and likelihood scores for an SVM plus sigmoid versus a kernel method trained with a regularized likelihood error function. These methods are tested on three dataminingstyle data sets. The SVM+sigmoid yields probabilities of comparable quality to the regularized maximum likelihood kernel method, while still retaining the sparseness of the SVM.
A ReExamination of Text Categorization Methods
, 1999
"... This paper reports a controlled study with statistical significance tests on five text categorization methods: the Support Vector Machines (SVM), a kNearest Neighbor (kNN) classifier, a neural network (NNet) approach, the Linear Leastsquares Fit (LLSF) mapping and a NaiveBayes (NB) classifier. We f ..."
Abstract

Cited by 832 (24 self)
 Add to MetaCart
(Show Context)
This paper reports a controlled study with statistical significance tests on five text categorization methods: the Support Vector Machines (SVM), a kNearest Neighbor (kNN) classifier, a neural network (NNet) approach, the Linear Leastsquares Fit (LLSF) mapping and a NaiveBayes (NB) classifier. We focus on the robustness of these methods in dealing with a skewed category distribution, and their performance as function of the trainingset category frequency. Our results show that SVM, kNN and LLSF significantly outperform NNet and NB when the number of positive training instances per category are small (less than ten), and that all the methods perform comparably when the categories are sufficiently common (over 300 instances).
Making LargeScale Support Vector Machine Learning Practical
, 1998
"... Training a support vector machine (SVM) leads to a quadratic optimization problem with bound constraints and one linear equality constraint. Despite the fact that this type of problem is well understood, there are many issues to be considered in designing an SVM learner. In particular, for large lea ..."
Abstract

Cited by 620 (1 self)
 Add to MetaCart
Training a support vector machine (SVM) leads to a quadratic optimization problem with bound constraints and one linear equality constraint. Despite the fact that this type of problem is well understood, there are many issues to be considered in designing an SVM learner. In particular, for large learning tasks with many training examples, offtheshelf optimization techniques for general quadratic programs quickly become intractable in their memory and time requirements. SVM light1 is an implementation of an SVM learner which addresses the problem of large tasks. This chapter presents algorithmic and computational results developed for SVM light V2.0, which make largescale SVM training more practical. The results give guidelines for the application of SVMs to large domains.
Support vector machines for spam categorization
 IEEE TRANSACTIONS ON NEURAL NETWORKS
, 1999
"... We study the use of support vector machines (SVM’s) in classifying email as spam or nonspam by comparing it to three other classification algorithms: Ripper, Rocchio, and boosting decision trees. These four algorithms were tested on two different data sets: one data set where the number of features ..."
Abstract

Cited by 333 (3 self)
 Add to MetaCart
We study the use of support vector machines (SVM’s) in classifying email as spam or nonspam by comparing it to three other classification algorithms: Ripper, Rocchio, and boosting decision trees. These four algorithms were tested on two different data sets: one data set where the number of features were constrained to the 1000 best features and another data set where the dimensionality was over 7000. SVM’s performed best when using binary features. For both data sets, boosting trees and SVM’s had acceptable test performance in terms of accuracy and speed. However, SVM’s had significantly less training time.
Multicategory Support Vector Machines, theory, and application to the classification of microarray data and satellite radiance data
 Journal of the American Statistical Association
, 2004
"... Twocategory support vector machines (SVM) have been very popular in the machine learning community for classi � cation problems. Solving multicategory problems by a series of binary classi � ers is quite common in the SVM paradigm; however, this approach may fail under various circumstances. We pro ..."
Abstract

Cited by 261 (25 self)
 Add to MetaCart
Twocategory support vector machines (SVM) have been very popular in the machine learning community for classi � cation problems. Solving multicategory problems by a series of binary classi � ers is quite common in the SVM paradigm; however, this approach may fail under various circumstances. We propose the multicategory support vector machine (MSVM), which extends the binary SVM to the multicategory case and has good theoretical properties. The proposed method provides a unifying framework when there are either equal or unequal misclassi � cation costs. As a tuning criterion for the MSVM, an approximate leaveoneout crossvalidation function, called Generalized Approximate Cross Validation, is derived, analogous to the binary case. The effectiveness of the MSVM is demonstrated through the applications to cancer classi � cation using microarray data and cloud classi � cation with satellite radiance pro � les.
Semisupervised support vector machines
 In Proc. NIPS
, 1998
"... We introduce a semisupervised support vector machine (S3yM) method. Given a training set of labeled data and a working set of unlabeled data, S3YM constructs a support vector machine using both the training and working sets. We use S3YM to solve the transduction problem using overall risk minimiza ..."
Abstract

Cited by 221 (7 self)
 Add to MetaCart
We introduce a semisupervised support vector machine (S3yM) method. Given a training set of labeled data and a working set of unlabeled data, S3YM constructs a support vector machine using both the training and working sets. We use S3YM to solve the transduction problem using overall risk minimization (ORM) posed by Yapnik. The transduction problem is to estimate the value of a classification function at the given points in the working set. This contrasts with the standard inductive learning problem of estimating the classification function at all possible values and then using the fixed function to deduce the classes of the working set data. We propose a general S3YM model that minimizes both the misclassification error and the function capacity based on all the available data. We show how the S3YM model for Inorm linear support vector machines can be converted to a mixedinteger program and then solved exactly using integer programming. Results of S3YM and the standard Inorm support vector machine approach are compared on ten data sets. Our computational results support the statistical learning theory results showing that incorporating working data improves generalization when insufficient training information is available. In every case, S3YM either improved or showed no significant difference in generalization compared to the traditional approach. SemiSupervised Support Vector Machines 369 1
RSVM: Reduced support vector machines
 Data Mining Institute, Computer Sciences Department, University of Wisconsin
, 2001
"... Abstract An algorithm is proposed which generates a nonlinear kernelbased separating surface that requires as little as 1 % of a large dataset for its explicit evaluation. To generate this nonlinear surface, the entire dataset is used as a constraint in an optimization problem with very few variabl ..."
Abstract

Cited by 160 (19 self)
 Add to MetaCart
(Show Context)
Abstract An algorithm is proposed which generates a nonlinear kernelbased separating surface that requires as little as 1 % of a large dataset for its explicit evaluation. To generate this nonlinear surface, the entire dataset is used as a constraint in an optimization problem with very few variables corresponding to the 1%
Proximal support vector machine classifiers
 Proceedings KDD2001: Knowledge Discovery and Data Mining
, 2001
"... Abstract—A new approach to support vector machine (SVM) classification is proposed wherein each of two data sets are proximal to one of two distinct planes that are not parallel to each other. Each plane is generated such that it is closest to one of the two data sets and as far as possible from the ..."
Abstract

Cited by 152 (16 self)
 Add to MetaCart
(Show Context)
Abstract—A new approach to support vector machine (SVM) classification is proposed wherein each of two data sets are proximal to one of two distinct planes that are not parallel to each other. Each plane is generated such that it is closest to one of the two data sets and as far as possible from the other data set. Each of the two nonparallel proximal planes is obtained by a single MATLAB command as the eigenvector corresponding to a smallest eigenvalue of a generalized eigenvalue problem. Classification by proximity to two distinct nonlinear surfaces generated by a nonlinear kernel also leads to two simple generalized eigenvalue problems. The effectiveness of the proposed method is demonstrated by tests on simple examples as well as on a number of public data sets. These examples show the advantages of the proposed approach in both computation time and test set correctness. Index Terms—Support vector machines, proximal classification, generalized eigenvalues. 1
A modified finite newton method for fast solution of large scale linear svms
 Journal of Machine Learning Research
, 2005
"... This paper develops a fast method for solving linear SVMs with L2 loss function that is suited for large scale data mining tasks such as text classification. This is done by modifying the finite Newton method of Mangasarian in several ways. Experiments indicate that the method is much faster than de ..."
Abstract

Cited by 109 (8 self)
 Add to MetaCart
(Show Context)
This paper develops a fast method for solving linear SVMs with L2 loss function that is suited for large scale data mining tasks such as text classification. This is done by modifying the finite Newton method of Mangasarian in several ways. Experiments indicate that the method is much faster than decomposition methods such as SVM light, SMO and BSVM (e.g., 4100 fold), especially when the number of examples is large. The paper also suggests ways of extending the method to other loss functions such as the modified Huber’s loss function and the L1 loss function, and also for solving ordinal regression.