Results 11  20
of
2,000
CollusionSecure Fingerprinting for Digital Data
 IEEE Transactions on Information Theory
, 1996
"... This paper discusses methods for assigning codewords for the purpose of fingerprinting digital data (e.g., software, documents, and images). Fingerprinting consists of uniquely marking and registering each copy of the data. This marking allows a distributor to detect any unauthorized copy and trac ..."
Abstract

Cited by 353 (1 self)
 Add to MetaCart
This paper discusses methods for assigning codewords for the purpose of fingerprinting digital data (e.g., software, documents, and images). Fingerprinting consists of uniquely marking and registering each copy of the data. This marking allows a distributor to detect any unauthorized copy and trace it back to the user. This threat of detection will hopefully deter users from releasing unauthorized copies. A problem arises when users collude: For digital data, two different fingerprinted objects can be compared and the differences between them detected. Hence, a set of users can collude to detect the location of the fingerprint. They can then alter the fingerprint to mask their identities. We present a general fingerprinting solution which is secure in the context of collusion. In addition, we discuss methods for distributing fingerprinted data. 1 Introduction Fingerprinting is an old cryptographic technique. For instance, several hundred years ago logarithm tables were protec...
Expander Codes
 IEEE TRANSACTIONS ON INFORMATION THEORY
, 1996
"... We present a new class of asymptotically good, linear errorcorrecting codes based upon expander graphs. These codes have linear time sequential decoding algorithms, logarithmic time parallel decoding algorithms with a linear number of processors, and are simple to understand. We present both random ..."
Abstract

Cited by 346 (10 self)
 Add to MetaCart
We present a new class of asymptotically good, linear errorcorrecting codes based upon expander graphs. These codes have linear time sequential decoding algorithms, logarithmic time parallel decoding algorithms with a linear number of processors, and are simple to understand. We present both randomized and explicit constructions for some of these codes. Experimental results demonstrate the extremely good performance of the randomly chosen codes.
Balanced Allocations
 SIAM Journal on Computing
, 1994
"... Suppose that we sequentially place n balls into n boxes by putting each ball into a randomly chosen box. It is well known that when we are done, the fullest box has with high probability (1 + o(1)) ln n/ ln ln n balls in it. Suppose instead that for each ball we choose two boxes at random and place ..."
Abstract

Cited by 331 (8 self)
 Add to MetaCart
(Show Context)
Suppose that we sequentially place n balls into n boxes by putting each ball into a randomly chosen box. It is well known that when we are done, the fullest box has with high probability (1 + o(1)) ln n/ ln ln n balls in it. Suppose instead that for each ball we choose two boxes at random and place the ball into the one which is less full at the time of placement. We show that with high probability, the fullest box contains only ln ln n/ ln 2 +O(1) balls  exponentially less than before. Furthermore, we show that a similar gap exists in the infinite process, where at each step one ball, chosen uniformly at random, is deleted, and one ball is added in the manner above. We discuss consequences of this and related theorems for dynamic resource allocation, hashing, and online load balancing.
Correlation Clustering
 MACHINE LEARNING
, 2002
"... We consider the following clustering problem: we have a complete graph on # vertices (items), where each edge ### ## is labeled either # or depending on whether # and # have been deemed to be similar or different. The goal is to produce a partition of the vertices (a clustering) that agrees as mu ..."
Abstract

Cited by 329 (4 self)
 Add to MetaCart
(Show Context)
We consider the following clustering problem: we have a complete graph on # vertices (items), where each edge ### ## is labeled either # or depending on whether # and # have been deemed to be similar or different. The goal is to produce a partition of the vertices (a clustering) that agrees as much as possible with the edge labels. That is, we want a clustering that maximizes the number of # edges within clusters, plus the number of edges between clusters (equivalently, minimizes the number of disagreements: the number of edges inside clusters plus the number of # edges between clusters). This formulation is motivated from a document clustering problem in which one has a pairwise similarity function # learned from past data, and the goal is to partition the current set of documents in a way that correlates with # as much as possible; it can also be viewed as a kind of "agnostic learning" problem. An interesting
Broadcast Encryption
, 1994
"... We introduce new theoretical measures for the qualitative and quantitative assessment of encryption schemes designed for broadcast transmissions. The goal is to allow a central broadcast site to broadcast secure transmissions to an arbitrary set of recipients while minimizing key management related ..."
Abstract

Cited by 326 (10 self)
 Add to MetaCart
We introduce new theoretical measures for the qualitative and quantitative assessment of encryption schemes designed for broadcast transmissions. The goal is to allow a central broadcast site to broadcast secure transmissions to an arbitrary set of recipients while minimizing key management related transmissions. We present several schemes that allow a center to broadcast a secret to any subset of privileged users out of a universe of size n so that coalitions of k users not in the privileged set cannot learn the secret. The most interesting scheme requires every user to store O(k log k log n) keys and the center to broadcast O(k 2 log 2 k log n) messages regardless of the size of the privileged set. This scheme is resilient to any coalition of k users. We also present a scheme that is resilient with probability p against a random subset of k users. This scheme requires every user to store O(log k log(1=p)) keys and the center to broadcast O(k log 2 k log(1=p)) messages. Prel...
Priority Encoding Transmission
 IEEE Transactions on Information Theory
, 1994
"... We introduce a new method, called Priority Encoding Transmission, for sending messages over lossy packetbased networks. When a message is to be transmitted, the user specifies a priority value for each part of the message. Based on the priorities, the system encodes the message into packets for tra ..."
Abstract

Cited by 316 (12 self)
 Add to MetaCart
We introduce a new method, called Priority Encoding Transmission, for sending messages over lossy packetbased networks. When a message is to be transmitted, the user specifies a priority value for each part of the message. Based on the priorities, the system encodes the message into packets for transmission and sends them to (possibly multiple) receivers. The priority value of each part of the message determines the fraction of encoding packets sufficient to recover that part. Thus, even if some of the encoding packets are lost enroute, each receiver is still able to recover the parts of the message for which a sufficient fraction of the encoding packets are received. International Computer Science Institute, Berkeley, California. Research supported in part by National Science Foundation operating grant NCR941610 y Computer Science Department, Swiss Federal Institute of Technology, Zurich, Switzerland. Research done while a postdoc at the International Computer Science Institute...
Visual Cryptography
, 1995
"... In this paper we consider a new type of cryptographic scheme, which can decode concealed images without any cryptographic computations. The scheme is perfectly secure and very easy to implement. We extend it into a visual variant of the k out of n secret sharing problem, in which a dealer provides a ..."
Abstract

Cited by 310 (4 self)
 Add to MetaCart
In this paper we consider a new type of cryptographic scheme, which can decode concealed images without any cryptographic computations. The scheme is perfectly secure and very easy to implement. We extend it into a visual variant of the k out of n secret sharing problem, in which a dealer provides a transparency to each one of the n users; any k of them can see the image by stacking their transparencies, but any k  1 of them gain no information about it.
SmallBias Probability Spaces: Efficient Constructions and Applications
 SIAM J. Comput
, 1993
"... We show how to efficiently construct a small probability space on n binary random variables such that for every subset, its parity is either zero or one with "almost" equal probability. They are called fflbiased random variables. The number of random bits needed to generate the random var ..."
Abstract

Cited by 289 (15 self)
 Add to MetaCart
(Show Context)
We show how to efficiently construct a small probability space on n binary random variables such that for every subset, its parity is either zero or one with "almost" equal probability. They are called fflbiased random variables. The number of random bits needed to generate the random variables is O(log n + log 1 ffl ). Thus, if ffl is polynomially small, then the size of the sample space is also polynomial. Random variables that are fflbiased can be used to construct "almost" kwise independent random variables where ffl is a function of k. These probability spaces have various applications: 1. Derandomization of algorithms: many randomized algorithms that require only k wise independence of their random bits (where k is bounded by O(log n)), can be derandomized by using fflbiased random variables. 2. Reducing the number of random bits required by certain randomized algorithms, e.g., verification of matrix multiplication. 3. Exhaustive testing of combinatorial circui...
The Power of Two Choices in Randomized Load Balancing
 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS
, 1996
"... Suppose that n balls are placed into n bins, each ball being placed into a bin chosen independently and uniformly at random. Then, with high probability, the maximum load in any bin is approximately log n log log n . Suppose instead that each ball is placed sequentially into the least full of d ..."
Abstract

Cited by 288 (23 self)
 Add to MetaCart
Suppose that n balls are placed into n bins, each ball being placed into a bin chosen independently and uniformly at random. Then, with high probability, the maximum load in any bin is approximately log n log log n . Suppose instead that each ball is placed sequentially into the least full of d bins chosen independently and uniformly at random. It has recently been shown that the maximum load is then only log log n log d +O(1) with high probability. Thus giving each ball two choices instead of just one leads to an exponential improvement in the maximum load. This result demonstrates the power of two choices, and it has several applications to load balancing in distributed systems. In this thesis, we expand upon this result by examining related models and by developing techniques for stu...
The Average Distance in a Random Graph with Given Expected Degrees
"... Random graph theory is used to examine the “smallworld phenomenon”– any two strangers are connected through a short chain of mutual acquaintances. We will show that for certain families of random graphs with given expected degrees, the average distance is almost surely of order log n / log ˜ d whe ..."
Abstract

Cited by 283 (13 self)
 Add to MetaCart
Random graph theory is used to examine the “smallworld phenomenon”– any two strangers are connected through a short chain of mutual acquaintances. We will show that for certain families of random graphs with given expected degrees, the average distance is almost surely of order log n / log ˜ d where ˜ d is the weighted average of the sum of squares of the expected degrees. Of particular interest are power law random graphs in which the number of vertices of degree k is proportional to 1/k β for some fixed exponent β. For the case of β> 3, we prove that the average distance of the power law graphs is almost surely of order log n / log ˜ d. However, many Internet, social, and citation networks are power law graphs with exponents in the range 2 < β < 3 for which the power law random graphs have average distance almost surely of order log log n, but have diameter of order log n (provided having some mild constraints for the average distance and maximum degree). In particular, these graphs contain a dense subgraph, that we call the core, having n c / log log n vertices. Almost all vertices are within distance log log n of the core although there are vertices at distance log n from the core.