Results 1 
3 of
3
Irrelevant Features and the Subset Selection Problem
 MACHINE LEARNING: PROCEEDINGS OF THE ELEVENTH INTERNATIONAL
, 1994
"... We address the problem of finding a subset of features that allows a supervised induction algorithm to induce small highaccuracy concepts. We examine notions of relevance and irrelevance, and show that the definitions used in the machine learning literature do not adequately partition the features ..."
Abstract

Cited by 594 (23 self)
 Add to MetaCart
We address the problem of finding a subset of features that allows a supervised induction algorithm to induce small highaccuracy concepts. We examine notions of relevance and irrelevance, and show that the definitions used in the machine learning literature do not adequately partition the features into useful categories of relevance. We present definitions for irrelevance and for two degrees of relevance. These definitions improve our understanding of the behavior of previous subset selection algorithms, and help define the subset of features that should be sought. The features selected should depend not only on the features and the target concept, but also on the induction algorithm. We describe a method for feature subset selection using crossvalidation that is applicable to any induction algorithm, and discuss experiments conducted with ID3 and C4.5 on artificial and real datasets.
Cryptographic Limitations on Learning Boolean Formulae and Finite Automata
 PROCEEDINGS OF THE TWENTYFIRST ANNUAL ACM SYMPOSIUM ON THEORY OF COMPUTING
, 1989
"... In this paper we prove the intractability of learning several classes of Boolean functions in the distributionfree model (also called the Probably Approximately Correct or PAC model) of learning from examples. These results are representation independent, in that they hold regardless of the syntact ..."
Abstract

Cited by 311 (16 self)
 Add to MetaCart
In this paper we prove the intractability of learning several classes of Boolean functions in the distributionfree model (also called the Probably Approximately Correct or PAC model) of learning from examples. These results are representation independent, in that they hold regardless of the syntactic form in which the learner chooses to represent its hypotheses. Our methods reduce the problems of cracking a number of wellknown publickey cryptosystems to the learning problems. We prove that a polynomialtime learning algorithm for Boolean formulae, deterministic finite automata or constantdepth threshold circuits would have dramatic consequences for cryptography and number theory: in particular, such an algorithm could be used to break the RSA cryptosystem, factor Blum integers (composite numbers equivalent to 3 modulo 4), and detect quadratic residues. The results hold even if the learning algorithm is only required to obtain a slight advantage in prediction over random guessing. The techniques used demonstrate an interesting duality between learning and cryptography. We also apply our results to obtain strong intractability results for approximating a generalization of graph coloring.
Wrappers For Performance Enhancement And Oblivious Decision Graphs
, 1995
"... In this doctoral dissertation, we study three basic problems in machine learning and two new hypothesis spaces with corresponding learning algorithms. The problems we investigate are: accuracy estimation, feature subset selection, and parameter tuning. The latter two problems are related and are stu ..."
Abstract

Cited by 107 (8 self)
 Add to MetaCart
In this doctoral dissertation, we study three basic problems in machine learning and two new hypothesis spaces with corresponding learning algorithms. The problems we investigate are: accuracy estimation, feature subset selection, and parameter tuning. The latter two problems are related and are studied under the wrapper approach. The hypothesis spaces we investigate are: decision tables with a default majority rule (DTMs) and oblivious readonce decision graphs (OODGs).