Results 1 
6 of
6
Iteration, Inequalities, and Differentiability in Analog Computers
, 1999
"... Shannon's General Purpose Analog Computer (GPAC) is an elegant model of analog computation in continuous time. In this paper, we consider whether the set G of GPACcomputable functions is closed under iteration, that is, whether for any function f(x) 2 G there is a function F (x; t) 2 G such t ..."
Abstract

Cited by 29 (15 self)
 Add to MetaCart
Shannon's General Purpose Analog Computer (GPAC) is an elegant model of analog computation in continuous time. In this paper, we consider whether the set G of GPACcomputable functions is closed under iteration, that is, whether for any function f(x) 2 G there is a function F (x; t) 2 G such that F (x; t) = f t (x) for nonnegative integers t. We show that G is not closed under iteration, but a simple extension of it is. In particular, if we relax the definition of the GPAC slightly to include unique solutions to boundary value problems, or equivalently if we allow functions x k (x) that sense inequalities in a dierentiable way, the resulting class, which we call G + k , is closed under iteration. Furthermore, G + k includes all primitive recursive functions, and has the additional closure property that if T (x) is in G+k , then any function of x computable by a Turing machine in T (x) time is also.
An analog characterization of the Grzegorczyk hierarchy
 Journal of Complexity
, 2002
"... We study a restricted version of Shannon's General . . . ..."
Abstract

Cited by 29 (15 self)
 Add to MetaCart
We study a restricted version of Shannon's General . . .
Upper and Lower Bounds on ContinuousTime Computation
"... We consider various extensions and modifications of Shannon's General Purpose Analog Computer, which is a model of computation by differential equations in continuous time. We show that several classical computation classes have natural analog counterparts, including the primitive recursive function ..."
Abstract

Cited by 8 (2 self)
 Add to MetaCart
We consider various extensions and modifications of Shannon's General Purpose Analog Computer, which is a model of computation by differential equations in continuous time. We show that several classical computation classes have natural analog counterparts, including the primitive recursive functions, the elementary functions, the levels of the Grzegorczyk hierarchy, and the arithmetical and analytical hierarchies.
An analog characterization of the subrecursive functions
 PROC. 4TH CONFERENCE ON REAL NUMBERS AND COMPUTERS
, 2000
"... We study a restricted version of Shannon’s General Purpose Analog Computer in which we only allow the machine to solve linear differential equations. This corresponds to only allowing local feedback in the machine’s variables. We show that if this computer is allowed to sense inequalities in a dif ..."
Abstract

Cited by 6 (1 self)
 Add to MetaCart
We study a restricted version of Shannon’s General Purpose Analog Computer in which we only allow the machine to solve linear differential equations. This corresponds to only allowing local feedback in the machine’s variables. We show that if this computer is allowed to sense inequalities in a differentiable way, then it can compute exactly the elementary functions. Furthermore, we show that if the machine has access to an oracle which computes a function f(x) with a suitable growth as x goes to infinity, then it can compute functions on any given level of the Grzegorczyk hierarchy. More precisely, we show that the model contains exactly the nth level of the Grzegorczyk hierarchy if it is allowed to solve n − 3 nonlinear differential equations of a certain kind. Therefore, we claim that there is a close connection between analog complexity classes, and the dynamical systems that compute them, and classical sets of subrecursive functions.
Iteration, Inequalities, and Dierentiability in Analog Computers
"... . Shannon's General Purpose Analog Computer (GPAC) is an elegant model of analog computation in continuous time. In this paper, we consider whether the set G of GPACcomputable functions is closed under iteration, that is, whether for any function f(x) 2 G there is a function F (x; t) 2 G such t ..."
Abstract

Cited by 4 (3 self)
 Add to MetaCart
. Shannon's General Purpose Analog Computer (GPAC) is an elegant model of analog computation in continuous time. In this paper, we consider whether the set G of GPACcomputable functions is closed under iteration, that is, whether for any function f(x) 2 G there is a function F (x; t) 2 G such that F (x; t) = f t (x) for nonnegative integers t. We show that G is not closed under iteration, but a simple extension of it is. In particular, if we relax the denition of the GPAC slightly to include unique solutions to boundary value problems, or equivalently if we allow functions x k (x) that sense inequalities in a dierentiable way, the resulting class, which we call G + k , is closed under iteration. Furthermore, G + k includes all primitive recursive functions, and has the additional closure property that if T (x) is in G+k , then any function of x computable by a Turing machine in T (x) time is also. Key words: Analog computation, recursion theory, iteration, die...
From recursive toIRrecursive functions
, 1997
"... The quest for limits of computer simulations of the physical (real) world embraces a theory of analog computing. Moore proposed a recursion theory on the reals and de ned the class of IRrecursive functions that includes functions which are not computable in the traditional sense. In this paper we p ..."
Abstract
 Add to MetaCart
The quest for limits of computer simulations of the physical (real) world embraces a theory of analog computing. Moore proposed a recursion theory on the reals and de ned the class of IRrecursive functions that includes functions which are not computable in the traditional sense. In this paper we prove Turing universality of IRrecursive functions using recursive function theory. Therefore, we establish a direct link between both theories. 1