Results 1 
7 of
7
Little Theories
 Automated DeductionCADE11, volume 607 of Lecture Notes in Computer Science
, 1992
"... In the "little theories" version of the axiomatic method, different portions of mathematics are developed in various different formal axiomatic theories. Axiomatic theories may be related by inclusion or by theory interpretation. We argue that the little theories approach is a desirable way to forma ..."
Abstract

Cited by 48 (15 self)
 Add to MetaCart
In the "little theories" version of the axiomatic method, different portions of mathematics are developed in various different formal axiomatic theories. Axiomatic theories may be related by inclusion or by theory interpretation. We argue that the little theories approach is a desirable way to formalize mathematics, and we describe how imps, an Interactive Mathematical Proof System, supports it.
Reasoning Theories  Towards an Architecture for Open Mechanized Reasoning Systems
, 1994
"... : Our ultimate goal is to provide a framework and a methodology which will allow users, and not only system developers, to construct complex reasoning systems by composing existing modules, or to add new modules to existing systems, in a "plug and play" manner. These modules and systems might be ..."
Abstract

Cited by 47 (11 self)
 Add to MetaCart
: Our ultimate goal is to provide a framework and a methodology which will allow users, and not only system developers, to construct complex reasoning systems by composing existing modules, or to add new modules to existing systems, in a "plug and play" manner. These modules and systems might be based on different logics; have different domain models; use different vocabularies and data structures; use different reasoning strategies; and have different interaction capabilities. This paper makes two main contributions towards our goal. First, it proposes a general architecture for a class of reasoning systems called Open Mechanized Reasoning Systems (OMRSs). An OMRS has three components: a reasoning theory component which is the counterpart of the logical notion of formal system, a control component which consists of a set of inference strategies, and an interaction component which provides an OMRS with the capability of interacting with other systems, including OMRSs and hum...
An Overview of A Formal Framework For Managing Mathematics
 Annals of Mathematics and Artificial Intelligence
, 2003
"... Mathematics is a process of creating, exploring, and connecting mathematical models. This paper presents an overview of a formal framework for managing the mathematics process as well as the mathematical knowledge produced by the process. The central idea of the framework is the notion of a biform t ..."
Abstract

Cited by 12 (6 self)
 Add to MetaCart
Mathematics is a process of creating, exploring, and connecting mathematical models. This paper presents an overview of a formal framework for managing the mathematics process as well as the mathematical knowledge produced by the process. The central idea of the framework is the notion of a biform theory which is simultaneously an axiomatic theory and an algorithmic theory. Representing a collection of mathematical models, a biform theory provides a formal context for both deduction and computation. The framework includes facilities for deriving theorems via a mixture of deduction and computation, constructing sound deduction and computation rules, and developing networks of biform theories linked by interpretations. The framework is not tied to a specific underlying logic; indeed, it is intended to be used with several background logics simultaneously. Many of the ideas and mechanisms used in the framework are inspired by the imps Interactive Mathematical Proof System and the Axiom computer algebra system.
Chiron: A set theory with types, undefinedness, quotation, and evaluation
, 2007
"... Chiron is a derivative of vonNeumannBernaysGödel (nbg) set theory that is intended to be a practical, generalpurpose logic for mechanizing mathematics. Unlike traditional set theories such as ZermeloFraenkel (zf) and nbg, Chiron is equipped with a type system, lambda notation, and definite and ..."
Abstract

Cited by 6 (5 self)
 Add to MetaCart
Chiron is a derivative of vonNeumannBernaysGödel (nbg) set theory that is intended to be a practical, generalpurpose logic for mechanizing mathematics. Unlike traditional set theories such as ZermeloFraenkel (zf) and nbg, Chiron is equipped with a type system, lambda notation, and definite and indefinite description. The type system includes a universal type, dependent types, dependent function types, subtypes, and possibly empty types. Unlike traditional logics such as firstorder logic and simple type theory, Chiron admits undefined terms that result, for example, from a function applied to an argument outside its domain or from an improper definite or indefinite description. The most noteworthy part of Chiron is its facility for reasoning about the syntax of expressions. Quotation is used to refer to a set called a construction that represents the syntactic structure of an expression, and evaluation is used to refer to the value of the expression that a construction
Open Mechanized Reasoning Systems
, 1992
"... Contents Project Summary . . . . . . . . . . . . . . . . . Introduction . . . . . . . . . . . . . . . . . . . Our previous work in mechanized reasoning systems . . . . . . . Existing reasoning systems . . . . . . . . . . . . . . . Existing logical frameworks . . . . . . . . . . . . . . Open mechani ..."
Abstract
 Add to MetaCart
Contents Project Summary . . . . . . . . . . . . . . . . . Introduction . . . . . . . . . . . . . . . . . . . Our previous work in mechanized reasoning systems . . . . . . . Existing reasoning systems . . . . . . . . . . . . . . . Existing logical frameworks . . . . . . . . . . . . . . Open mechanized reasoning systems . . . . . . . . . . . . Project Description . . . . . . . . . . . . . . . . . References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Accomplishments of Previous NSF Support . . . . . . . . . . Budget Pages . . . . . . . . . . . . . . . . . . . Biography of McCarthy . . . . . . . . . . . . . . . . Biography of Giunchiglia . . . . . . . . . . . . . . . Biography of Talcott . . . . . . . . . . . . . . . . i 1. Project summary There is a growing interest in the interconnection and integration of reasoning modules and systems. For example, developers of hardware veri