Results 1  10
of
44
Combinatorial Geometry
, 1995
"... Abstract. Let P be a set of n points in ~d (where d is a small fixed positive integer), and let F be a collection of subsets of ~d, each of which is defined by a constant number of bounded degree polynomial inequalities. We consider the following Frange searching problem: Given P, build a data stru ..."
Abstract

Cited by 164 (26 self)
 Add to MetaCart
Abstract. Let P be a set of n points in ~d (where d is a small fixed positive integer), and let F be a collection of subsets of ~d, each of which is defined by a constant number of bounded degree polynomial inequalities. We consider the following Frange searching problem: Given P, build a data structure for efficient answering of queries of the form, "Given a 7 ~ F, count (or report) the points of P lying in 7." Generalizing the simplex range searching techniques, we give a solution with nearly linear space and preprocessing time and with O(n 1 x/b+~) query time, where d < b < 2d 3 and ~> 0 is an arbitrarily small constant. The acutal value of b is related to the problem of partitioning arrangements of algebraic surfaces into cells with a constant description complexity. We present some of the applications of Frange searching problem, including improved ray shooting among triangles in ~3 1.
Approximate Range Searching
 in Proc. 11th Annu. ACM Sympos. Comput. Geom
, 1995
"... The range searching problem is a fundamental problem in computational geometry, with numerous important applications. Most research has focused on solving this problem exactly, but lower bounds show that if linear space is assumed, the problem cannot be solved in polylogarithmic time, except for the ..."
Abstract

Cited by 84 (19 self)
 Add to MetaCart
The range searching problem is a fundamental problem in computational geometry, with numerous important applications. Most research has focused on solving this problem exactly, but lower bounds show that if linear space is assumed, the problem cannot be solved in polylogarithmic time, except for the case of orthogonal ranges. In this paper we show that if one is willing to allow approximate ranges, then it is possible to do much better. In particular, given a bounded range Q of diameter w and ffl ? 0, an approximate range query treats the range as a fuzzy object, meaning that points lying within distance fflw of the boundary of Q either may or may not be counted. We show that in any fixed dimension d, a set of n points in R d can be preprocessed in O(n log n) time and O(n) space, such that approximate queries can be answered in O(logn + (1=ffl) d ) time. The only assumption we make about ranges is that the intersection of a range and a ddimensional cube can be answered in const...
On Range Searching with Semialgebraic Sets
 DISCRETE COMPUT. GEOM
, 1994
"... Let P be a set of n points in R d (where d is a small fixed positive integer), and let \Gamma be a collection of subsets of R d , each of which is defined by a constant number of bounded degree polynomials. We consider the following \Gammarange searching problem: Given P , build a data structur ..."
Abstract

Cited by 80 (22 self)
 Add to MetaCart
Let P be a set of n points in R d (where d is a small fixed positive integer), and let \Gamma be a collection of subsets of R d , each of which is defined by a constant number of bounded degree polynomials. We consider the following \Gammarange searching problem: Given P , build a data structure for efficient answering of queries of the form `Given a fl 2 \Gamma, count (or report) the points of P lying in fl'. Generalizing the simplex range searching techniques, we give a solution with nearly linear space and preprocessing time and with O(n 1\Gamma1=b+ffi ) query time, where d b 2d \Gamma 3 and ffi ? 0 is an arbitrarily small constant. The actual value of b is related to the problem of partitioning arrangements of algebraic surfaces into constantcomplexity cells. We present some of the applications of \Gammarange searching problem, including improved ray shooting among triangles in R³.
Range Searching
, 1996
"... Range searching is one of the central problems in computational geometry, because it arises in many applications and a wide variety of geometric problems can be formulated as a rangesearching problem. A typical rangesearching problem has the following form. Let S be a set of n points in R d , an ..."
Abstract

Cited by 69 (1 self)
 Add to MetaCart
Range searching is one of the central problems in computational geometry, because it arises in many applications and a wide variety of geometric problems can be formulated as a rangesearching problem. A typical rangesearching problem has the following form. Let S be a set of n points in R d , and let R be a family of subsets; elements of R are called ranges . We wish to preprocess S into a data structure so that for a query range R, the points in S " R can be reported or counted efficiently. Typical examples of ranges include rectangles, halfspaces, simplices, and balls. If we are only interested in answering a single query, it can be done in linear time, using linear space, by simply checking for each point p 2 S whether p lies in the query range.
The multiplicative weights update method: a meta algorithm and applications
, 2005
"... Algorithms in varied fields use the idea of maintaining a distribution over a certain set and use the multiplicative update rule to iteratively change these weights. Their analysis are usually very similar and rely on an exponential potential function. We present a simple meta algorithm that unifies ..."
Abstract

Cited by 54 (10 self)
 Add to MetaCart
Algorithms in varied fields use the idea of maintaining a distribution over a certain set and use the multiplicative update rule to iteratively change these weights. Their analysis are usually very similar and rely on an exponential potential function. We present a simple meta algorithm that unifies these disparate algorithms and drives them as simple instantiations of the meta algorithm. 1
Geometric Range Searching
, 1994
"... In geometric range searching, algorithmic problems of the following type are considered: Given an npoint set P in the plane, build a data structure so that, given a query triangle R, the number of points of P lying in R can be determined quickly. Problems of this type are of crucial importance in c ..."
Abstract

Cited by 46 (2 self)
 Add to MetaCart
In geometric range searching, algorithmic problems of the following type are considered: Given an npoint set P in the plane, build a data structure so that, given a query triangle R, the number of points of P lying in R can be determined quickly. Problems of this type are of crucial importance in computational geometry, as they can be used as subroutines in many seemingly unrelated algorithms. We present a survey of results and main techniques in this area.
Efficient Image Retrieval through Vantage Objects
 Pattern Recognition
, 1999
"... We describe a new indexing structure for general image retrieval that relies solely on a distance function giving the similarity between two images. For each image object in the database, its distance to a set of m predetermined vantage objects is calculated; the mvector of these distances specifie ..."
Abstract

Cited by 46 (7 self)
 Add to MetaCart
We describe a new indexing structure for general image retrieval that relies solely on a distance function giving the similarity between two images. For each image object in the database, its distance to a set of m predetermined vantage objects is calculated; the mvector of these distances specifies a point in the mdimensional vantage space. The database objects that are similar (in terms of the distance function) to a given query object can be determined by means of an efficient nearestneighbor search on these points. We demonstrate the viability of our approach through experimental results obtained with a database of about 48,000 hieroglyphic polylines.
An ExpanderBased Approach to Geometric Optimization
 IN PROC. 9TH ANNU. ACM SYMPOS. COMPUT. GEOM
, 1993
"... We present a new approach to problems in geometric optimization that are traditionally solved using the parametric searching technique of Megiddo [34]. Our new approach ..."
Abstract

Cited by 39 (16 self)
 Add to MetaCart
We present a new approach to problems in geometric optimization that are traditionally solved using the parametric searching technique of Megiddo [34]. Our new approach
Deterministic Sampling and Range Counting in Geometric Data Streams
 In Proc. 20th ACM Sympos. Comput. Geom
, 2004
"... We present memoryefficient deterministic algorithms for constructing #nets and #approximations of streams of geometric data. Unlike probabilistic approaches, these deterministic samples provide guaranteed bounds on their approximation factors. We show how our deterministic samples can be used t ..."
Abstract

Cited by 26 (0 self)
 Add to MetaCart
We present memoryefficient deterministic algorithms for constructing #nets and #approximations of streams of geometric data. Unlike probabilistic approaches, these deterministic samples provide guaranteed bounds on their approximation factors. We show how our deterministic samples can be used to answer approximate online iceberg geometric queries on data streams. We use these techniques to approximate several robust statistics of geometric data streams, including Tukey depth, simplicial depth, regression depth, the ThielSen estimator, and the least median of squares. Our algorithms use only a polylogarithmic amount of memory, provided the desired approximation factors are inversepolylogarithmic. We also include a lower bound for noniceberg geometric queries.