Results 1  10
of
117
Error and attack tolerance of complex networks
, 2000
"... Many complex systems display a surprising degree of tolerance against errors. For example, relatively simple organisms grow, persist and reproduce despite drastic pharmaceutical or environmental interventions, an error tolerance attributed to the robustness of the underlying metabolic network [1]. C ..."
Abstract

Cited by 754 (5 self)
 Add to MetaCart
Many complex systems display a surprising degree of tolerance against errors. For example, relatively simple organisms grow, persist and reproduce despite drastic pharmaceutical or environmental interventions, an error tolerance attributed to the robustness of the underlying metabolic network [1]. Complex communication networks [2] display a surprising degree of robustness: while key components regularly malfunction, local failures rarely lead to the loss of the global informationcarrying ability of the network. The stability of these and other complex systems is often attributed to the redundant wiring of the functional web defined by the systems’ components. In this paper we demonstrate that error tolerance is not shared by all redundant systems, but it is displayed only by a class of inhomogeneously wired networks, called scalefree networks. We find that scalefree networks, describing a number of systems, such as the World Wide Web (www) [3–5], Internet [6], social networks [7] or a cell [8], display an unexpected degree of robustness, the ability of their nodes to communicate being unaffected by even unrealistically high failure rates. However,
Mining the Network Value of Customers
 In Proceedings of the Seventh International Conference on Knowledge Discovery and Data Mining
, 2002
"... One of the major applications of data mining is in helping companies determine which potential customers to market to. If the expected pro t from a customer is greater than the cost of marketing to her, the marketing action for that customer is executed. So far, work in this area has considered only ..."
Abstract

Cited by 480 (11 self)
 Add to MetaCart
(Show Context)
One of the major applications of data mining is in helping companies determine which potential customers to market to. If the expected pro t from a customer is greater than the cost of marketing to her, the marketing action for that customer is executed. So far, work in this area has considered only the intrinsic value of the customer (i.e, the expected pro t from sales to her). We propose to model also the customer's network value: the expected pro t from sales to other customers she may inuence to buy, the customers those may inuence, and so on recursively. Instead of viewing a market as a set of independent entities, we view it as a social network and model it as a Markov random eld. We show the advantages of this approach using a social network mined from a collaborative ltering database. Marketing that exploits the network value of customersalso known as viral marketingcan be extremely eective, but is still a black art. Our work can be viewed as a step towards providing a more solid foundation for it, taking advantage of the availability of large relevant databases. Categories and Subject Descriptors H.2.8 [Database Management]: Database Applications data mining
A Random Graph Model for Massive Graphs
, 2000
"... We propose a random graph model which is a special case of sparse random graphs with given degree sequences. This model involves only a small number of parameters, called logsize and loglog growth rate. These parameters capture some universal characteristics of massive graphs. Furthermore, from the ..."
Abstract

Cited by 386 (25 self)
 Add to MetaCart
We propose a random graph model which is a special case of sparse random graphs with given degree sequences. This model involves only a small number of parameters, called logsize and loglog growth rate. These parameters capture some universal characteristics of massive graphs. Furthermore, from these parameters, various properties of the graph can be derived. For example, for certain ranges of the parameters, we will compute the expected distribution of the sizes of the connected components which almost surely occur with high probability. We will illustrate the consistency of our model with the behavior of some massive graphs derived from data in telecommunications. We will also discuss the threshold function, the giant component, and the evolution of random graphs in this model.
Evolution of networks
 Adv. Phys
, 2002
"... We review the recent fast progress in statistical physics of evolving networks. Interest has focused mainly on the structural properties of random complex networks in communications, biology, social sciences and economics. A number of giant artificial networks of such a kind came into existence rece ..."
Abstract

Cited by 356 (3 self)
 Add to MetaCart
(Show Context)
We review the recent fast progress in statistical physics of evolving networks. Interest has focused mainly on the structural properties of random complex networks in communications, biology, social sciences and economics. A number of giant artificial networks of such a kind came into existence recently. This opens a wide field for the study of their topology, evolution, and complex processes occurring in them. Such networks possess a rich set of scaling properties. A number of them are scalefree and show striking resilience against random breakdowns. In spite of large sizes of these networks, the distances between most their vertices are short — a feature known as the “smallworld” effect. We discuss how growing networks selforganize into scalefree structures and the role of the mechanism of preferential linking. We consider the topological and structural properties of evolving networks, and percolation in these networks. We present a number of models demonstrating the main features of evolving networks and discuss current approaches for their simulation and analytical study. Applications of the general results to particular networks in Nature are discussed. We demonstrate the generic connections of the network growth processes with the general problems
Mining KnowledgeSharing Sites for Viral Marketing
, 2002
"... Viral marketing takes advantage of networks of influence among customers to inexpensively achieve large changes in behavior. Our research seeks to put it on a firmer footing by mining these networks from data, building probabilistic models of them, and using these models to choose the best viral mar ..."
Abstract

Cited by 312 (8 self)
 Add to MetaCart
(Show Context)
Viral marketing takes advantage of networks of influence among customers to inexpensively achieve large changes in behavior. Our research seeks to put it on a firmer footing by mining these networks from data, building probabilistic models of them, and using these models to choose the best viral marketing plan. Knowledgesharing sites, where customers review products and advise each other, are a fertile source for this type of data mining. In this paper we extend our previous techniques, achieving a large reduction in computational cost, and apply them to data from a knowledgesharing site. We optimize the amount of marketing funds spent on each customer, rather than just making a binary decision on whether to market to him. We take into account the fact that knowledge of the network is partial, and that gathering that knowledge can itself have a cost. Our results show the robustness and utility of our approach.
Stochastic Models for the Web Graph
, 2000
"... The web may be viewed as a directed graph each of whose vertices is a static HTML web page, and each of whose edges corresponds to a hyperlink from one web page to another. In this paper we propose and analyze random graph models inspired by a series of empirical observations on the web. Our graph m ..."
Abstract

Cited by 269 (13 self)
 Add to MetaCart
(Show Context)
The web may be viewed as a directed graph each of whose vertices is a static HTML web page, and each of whose edges corresponds to a hyperlink from one web page to another. In this paper we propose and analyze random graph models inspired by a series of empirical observations on the web. Our graph models differ from the traditional Gn;p models in two ways: 1. Independently chosen edges do not result in the statistics (degree distributions, clique multitudes) observed on the web. Thus, edges in our model are statistically dependent on each other. 2. Our model introduces new vertices in the graph as time evolves. This captures the fact that the web is changing with time. Our results are two fold: we show that graphs generated using our model exhibit the statistics observed on the web graph, and additionally, that natural graph models proposed earlier do not exhibit them. This remains true even when these earlier models are generalized to account for the arrival of vertices over time. In particular, the sparse random graphs in our models exhibit properties that do not arise in far denser random graphs generated by ErdosR'enyi models.
The Web as a graph
, 2000
"... The pages and hyperlinks of the WorldWide Web maybe viewed as nodes and edges in a directed graph. This graph has about a billion nodes today,several billion links, and appears to grow exponentially with time. There are many reasonsmathematical, sociological, and commercialfor studying the e ..."
Abstract

Cited by 220 (3 self)
 Add to MetaCart
The pages and hyperlinks of the WorldWide Web maybe viewed as nodes and edges in a directed graph. This graph has about a billion nodes today,several billion links, and appears to grow exponentially with time. There are many reasonsmathematical, sociological, and commercialfor studying the evolution of this graph. We first review a set of algorithms that operate on the Web graph, addressing problems from Web search, automatic community discovery, and classification. We then recall a number of measurements and properties of the Web graph. Noting that traditional random graph models do not explain these observations, we propose a new family of random graph models.
RMAT: A recursive model for graph mining
 In Fourth SIAM International Conference on Data Mining (SDM’ 04
, 2004
"... How does a ‘normal ’ computer (or social) network look like? How can we spot ‘abnormal ’ subnetworks in the Internet, or web graph? The answer to such questions is vital for outlier detection (terrorist networks, or illegal moneylaundering rings), forecasting, and simulations (“how will a computer ..."
Abstract

Cited by 217 (18 self)
 Add to MetaCart
(Show Context)
How does a ‘normal ’ computer (or social) network look like? How can we spot ‘abnormal ’ subnetworks in the Internet, or web graph? The answer to such questions is vital for outlier detection (terrorist networks, or illegal moneylaundering rings), forecasting, and simulations (“how will a computer virus spread?”). The heart of the problem is finding the properties of real graphs that seem to persist over multiple disciplines. We list such “laws ” and, more importantly, we propose a simple, parsimonious model, the “recursive matrix ” (RMAT) model, which can quickly generate realistic graphs, capturing the essence of each graph in only a few parameters. Contrary to existing generators, our model can trivially generate weighted, directed and bipartite graphs; it subsumes the celebrated ErdősRényi model as a special case; it can match the power law behaviors, as well as the deviations from them (like the “winner does not take it all ” model of Pennock et al. [21]). We present results on multiple, large real graphs, where we show that our parameter fitting algorithm (AutoMATfast) fits them very well. 1
Connected Components in Random Graphs with Given Expected Degree Sequences
 ANNALS OF COMBINATORICS
"... ..."
(Show Context)
Graphscope: parameterfree mining of large timeevolving graphs
 In KDD ’07: Proceedings of the 13th ACM SIGKDD international conference on Knowledge discovery and data mining
, 2007
"... How can we find communities in dynamic networks of social interactions, such as who calls whom, who emails whom, or who sells to whom? How can we spot discontinuity timepoints in such streams of graphs, in an online, anytime fashion? We propose GraphScope, that addresses both problems, using inf ..."
Abstract

Cited by 133 (11 self)
 Add to MetaCart
(Show Context)
How can we find communities in dynamic networks of social interactions, such as who calls whom, who emails whom, or who sells to whom? How can we spot discontinuity timepoints in such streams of graphs, in an online, anytime fashion? We propose GraphScope, that addresses both problems, using information theoretic principles. Contrary to the majority of earlier methods, it needs no userdefined parameters. Moreover, it is designed to operate on large graphs, in a streaming fashion. We demonstrate the efficiency and effectiveness of our GraphScope on real datasets from several diverse domains. In all cases it produces meaningful timeevolving patterns that agree with human intuition.