Results 1 
4 of
4
Generic Accumulations
, 2002
"... which are eventually used in later stages of the computation. We present a generic definition of accumulations, achieved by the introduction of a new recursive operator on inductive types. We also show that the notion of downwards accumulation developed by Gibbons is subsumed by our notion of acc ..."
Abstract

Cited by 12 (1 self)
 Add to MetaCart
which are eventually used in later stages of the computation. We present a generic definition of accumulations, achieved by the introduction of a new recursive operator on inductive types. We also show that the notion of downwards accumulation developed by Gibbons is subsumed by our notion of accumulation.
Towards Merging Recursion and Comonads
, 2000
"... Comonads are mathematical structures that account naturally for effects that derive from the context in which a program is executed. This paper reports ongoing work on the interaction between recursion and comonads. Two applications are shown that naturally lead to versions of a comonadic fold op ..."
Abstract

Cited by 9 (2 self)
 Add to MetaCart
Comonads are mathematical structures that account naturally for effects that derive from the context in which a program is executed. This paper reports ongoing work on the interaction between recursion and comonads. Two applications are shown that naturally lead to versions of a comonadic fold operator on the product comonad. Both versions capture functions that require extra arguments for their computation and are related with the notion of strong datatype. 1 Introduction One of the main features of recursive operators derivable from datatype definitions is that they impose a structure upon programs which can be exploited for program transformation. Recursive operators structure functional programs according to the data structures they traverse or generate and come equipped with a battery of algebraic laws, also derivable from type definitions, which are used in program calculations [24, 11, 5, 15]. Some of these laws, the socalled fusion laws, are particularly interesting in p...
Distributivity of Categories of Coalgebras
"... We prove that for any F the category of F coalgebras is distributive if F preserves preimages, i.e. pullbacks along an injective map, and that the converse is also true whenever has finite products. ..."
Abstract

Cited by 2 (2 self)
 Add to MetaCart
We prove that for any F the category of F coalgebras is distributive if F preserves preimages, i.e. pullbacks along an injective map, and that the converse is also true whenever has finite products.
Towards Merging Recursion and Comonads
, 2000
"... Comonads are mathematical structures that account naturally for effects that derive from the context in which a program is executed. This paper reports ongoing work on the interaction between recursion and comonads. Two applications are shown that naturally lead to versions of a comonadic fold op ..."
Abstract
 Add to MetaCart
Comonads are mathematical structures that account naturally for effects that derive from the context in which a program is executed. This paper reports ongoing work on the interaction between recursion and comonads. Two applications are shown that naturally lead to versions of a comonadic fold operator on the product comonad. Both versions capture functions that require extra arguments for their computation and are related with the notion of strong datatype. 1 Introduction One of the main features of recursive operators derivable from datatype definitions is that they impose a structure upon programs which can be exploited for program transformation. Recursive operators structure functional programs according to the data structures they traverse or generate and come equipped with a battery of algebraic laws, also derivable from type definitions, which are used in program calculations [24, 11, 5, 15]. Some of these laws, the socalled fusion laws, are particularly interesting in p...