Results 1  10
of
74
Proof verification and hardness of approximation problems
 IN PROC. 33RD ANN. IEEE SYMP. ON FOUND. OF COMP. SCI
, 1992
"... We show that every language in NP has a probablistic verifier that checks membership proofs for it using logarithmic number of random bits and by examining a constant number of bits in the proof. If a string is in the language, then there exists a proof such that the verifier accepts with probabilit ..."
Abstract

Cited by 754 (38 self)
 Add to MetaCart
(Show Context)
We show that every language in NP has a probablistic verifier that checks membership proofs for it using logarithmic number of random bits and by examining a constant number of bits in the proof. If a string is in the language, then there exists a proof such that the verifier accepts with probability 1 (i.e., for every choice of its random string). For strings not in the language, the verifier rejects every provided “proof " with probability at least 1/2. Our result builds upon and improves a recent result of Arora and Safra [6] whose verifiers examine a nonconstant number of bits in the proof (though this number is a very slowly growing function of the input length). As a consequence we prove that no MAX SNPhard problem has a polynomial time approximation scheme, unless NP=P. The class MAX SNP was defined by Papadimitriou and Yannakakis [82] and hard problems for this class include vertex cover, maximum satisfiability, maximum cut, metric TSP, Steiner trees and shortest superstring. We also improve upon the clique hardness results of Feige, Goldwasser, Lovász, Safra and Szegedy [42], and Arora and Safra [6] and shows that there exists a positive ɛ such that approximating the maximum clique size in an Nvertex graph to within a factor of N ɛ is NPhard.
The NPcompleteness column: an ongoing guide
 JOURNAL OF ALGORITHMS
, 1987
"... This is the nineteenth edition of a (usually) quarterly column that covers new developments in the theory of NPcompleteness. The presentation is modeled on that used by M. R. Garey and myself in our book "Computers and Intractability: A Guide to the Theory of NPCompleteness," W. H. Freem ..."
Abstract

Cited by 217 (0 self)
 Add to MetaCart
(Show Context)
This is the nineteenth edition of a (usually) quarterly column that covers new developments in the theory of NPcompleteness. The presentation is modeled on that used by M. R. Garey and myself in our book "Computers and Intractability: A Guide to the Theory of NPCompleteness," W. H. Freeman & Co., New York, 1979 (hereinafter referred to as "[G&J]"; previous columns will be referred to by their dates). A background equivalent to that provided by [G&J] is assumed, and, when appropriate, crossreferences will be given to that book and the list of problems (NPcomplete and harder) presented there. Readers who have results they would like mentioned (NPhardness, PSPACEhardness, polynomialtimesolvability, etc.) or open problems they would like publicized, should
Free Bits, PCPs and NonApproximability  Towards Tight Results
, 1996
"... This paper continues the investigation of the connection between proof systems and approximation. The emphasis is on proving tight nonapproximability results via consideration of measures like the "free bit complexity" and the "amortized free bit complexity" of proof systems. ..."
Abstract

Cited by 208 (39 self)
 Add to MetaCart
This paper continues the investigation of the connection between proof systems and approximation. The emphasis is on proving tight nonapproximability results via consideration of measures like the "free bit complexity" and the "amortized free bit complexity" of proof systems.
Zero Knowledge and the Chromatic Number
 Journal of Computer and System Sciences
, 1996
"... We present a new technique, inspired by zeroknowledge proof systems, for proving lower bounds on approximating the chromatic number of a graph. To illustrate this technique we present simple reductions from max3coloring and max3sat, showing that it is hard to approximate the chromatic number wi ..."
Abstract

Cited by 194 (8 self)
 Add to MetaCart
(Show Context)
We present a new technique, inspired by zeroknowledge proof systems, for proving lower bounds on approximating the chromatic number of a graph. To illustrate this technique we present simple reductions from max3coloring and max3sat, showing that it is hard to approximate the chromatic number within \Omega\Gamma N ffi ), for some ffi ? 0. We then apply our technique in conjunction with the probabilistically checkable proofs of Hastad, and show that it is hard to approximate the chromatic number to within\Omega\Gamma N 1\Gammaffl ) for any ffl ? 0, assuming NP 6` ZPP. Here, ZPP denotes the class of languages decidable by a random expected polynomialtime algorithm that makes no errors. Our result matches (up to low order terms) the known gap for approximating the size of the largest independent set. Previous O(N ffi ) gaps for approximating the chromatic number (such as those by Lund and Yannakakis, and by Furer) did not match the gap for independent set, and do not extend...
The Maximum Clique Problem
, 1999
"... Contents 1 Introduction 2 1.1 Notations and Definitions . . . . . . . . . . . . . . . . . . . . . . . . 3 2 Problem Formulations 4 2.1 Integer Programming Formulations . . . . . . . . . . . . . . . . . . . 5 2.2 Continuous Formulations . . . . . . . . . . . . . . . . . . . . . . . . 8 3 Computation ..."
Abstract

Cited by 186 (21 self)
 Add to MetaCart
(Show Context)
Contents 1 Introduction 2 1.1 Notations and Definitions . . . . . . . . . . . . . . . . . . . . . . . . 3 2 Problem Formulations 4 2.1 Integer Programming Formulations . . . . . . . . . . . . . . . . . . . 5 2.2 Continuous Formulations . . . . . . . . . . . . . . . . . . . . . . . . 8 3 Computational Complexity 12 4 Bounds and Estimates 15 5 Exact Algorithms 19 5.1 Enumerative Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . 19 5.2 Exact Algorithms for the Unweighted Case . . . . . . . . . . . . . . 21 5.3 Exact Algorithms for the Weighted Case . . . . . . . . . . . . . . . . 25 6 Heuristics 27 6.1 Sequential Greedy Heuristics . . . . . . . . . . . . . . . . . . . . . . 28 6.2 Local Search Heuristics . . . . . . . . . . . . . . . . . . . . . . . . . 29 6.3 Advanced Search Heuristics . . . . . . . . . . . . . . . . . . . . . . . 30 6.3.1 Simulated annealing . . . . . . . . . . . . . . . . . . . . . . . 30 6.3.2 Neural networks . . . . . . . . . . . . . . . . . . . . . . . .
Interactive proofs and the hardness of approximating cliques
 JOURNAL OF THE ACM
, 1996
"... The contribution of this paper is twofold. First, a connection is shown between approximating the size of the largest clique in a graph and multiprover interactive proofs. Second, an efficient multiprover interactive proof for NP languages is constructed, where the verifier uses very few random b ..."
Abstract

Cited by 159 (13 self)
 Add to MetaCart
(Show Context)
The contribution of this paper is twofold. First, a connection is shown between approximating the size of the largest clique in a graph and multiprover interactive proofs. Second, an efficient multiprover interactive proof for NP languages is constructed, where the verifier uses very few random bits and communication bits. Last, the connection between cliques and efficient multiprover interactive proofs, is shown to yield hardness results on the complexity of approximating the size of the largest clique in a graph. Of independent interest is our proof of correctness for the multilinearity test of functions.
Approximating Maximum Independent Sets by Excluding Subgraphs
 BIT
, 1992
"... An approximation algorithm for the maximum independent set problem is given, improving the best performance guarantee known to O(n/(log n)²). We also obtain the same performance guarantee for graph coloring. The results can be combined into a surprisingly strong simultaneous performance guarantee ..."
Abstract

Cited by 139 (10 self)
 Add to MetaCart
(Show Context)
An approximation algorithm for the maximum independent set problem is given, improving the best performance guarantee known to O(n/(log n)²). We also obtain the same performance guarantee for graph coloring. The results can be combined into a surprisingly strong simultaneous performance guarantee for the clique and coloring problems. The framework
Improved NonApproximability Results
, 1994
"... We indicate strong nonapproximability factors for central problems: N^{1/4} for Max Clique; N^{1/10} for Chromatic Number; and 66/65 for Max 3SAT. Underlying the Max Clique result is a proof system in... ..."
Abstract

Cited by 117 (15 self)
 Add to MetaCart
(Show Context)
We indicate strong nonapproximability factors for central problems: N^{1/4} for Max Clique; N^{1/10} for Chromatic Number; and 66/65 for Max 3SAT. Underlying the Max Clique result is a proof system in...
Hardness Of Approximations
, 1996
"... This chapter is a selfcontained survey of recent results about the hardness of approximating NPhard optimization problems. ..."
Abstract

Cited by 113 (4 self)
 Add to MetaCart
This chapter is a selfcontained survey of recent results about the hardness of approximating NPhard optimization problems.