Results 1  10
of
141
ConjunctiveQuery Containment and Constraint Satisfaction
 Journal of Computer and System Sciences
, 1998
"... Conjunctivequery containment is recognized as a fundamental problem in database query evaluation and optimization. At the same time, constraint satisfaction is recognized as a fundamental problem in artificial intelligence. What do conjunctivequery containment and constraint satisfaction have in c ..."
Abstract

Cited by 164 (14 self)
 Add to MetaCart
(Show Context)
Conjunctivequery containment is recognized as a fundamental problem in database query evaluation and optimization. At the same time, constraint satisfaction is recognized as a fundamental problem in artificial intelligence. What do conjunctivequery containment and constraint satisfaction have in common? Our main conceptual contribution in this paper is to point out that, despite their very different formulation, conjunctivequery containment and constraint satisfaction are essentially the same problem. The reason is that they can be recast as the following fundamental algebraic problem: given two finite relational structures A and B, is there a homomorphism h : A ! B? As formulated above, the homomorphism problem is uniform in the sense that both relational structures A and B are part of the input. By fixing the structure B, one obtains the following nonuniform problem: given a finite relational structure A, is there a homomorphism h : A ! B? In general, nonuniform tractability results do not uniformize. Thus, it is natural to ask: which tractable cases of nonuniform tractability results for constraint satisfaction and conjunctivequery containment do uniformize? Our main technical contribution in this paper is to show that several cases of tractable nonuniform constraint satisfaction problems do indeed uniformize. We exhibit three nonuniform tractability results that uniformize and, thus, give rise to polynomialtime solvable cases of constraint satisfaction and conjunctivequery containment.
Constraint Satisfaction, Bounded Treewidth, and FiniteVariable Logics
, 2002
"... We systematically investigate the connections between constraint satisfaction problems, structures of bounded treewidth, and definability in logics with a finite number of variables. We first show that constraint satisfaction problems on inputs of treewidth less than k are definable using Datalog ..."
Abstract

Cited by 71 (12 self)
 Add to MetaCart
We systematically investigate the connections between constraint satisfaction problems, structures of bounded treewidth, and definability in logics with a finite number of variables. We first show that constraint satisfaction problems on inputs of treewidth less than k are definable using Datalog programs with at most k variables; this provides a new explanation for the tractability of these classes of problems. After this, we investigate constraint satisfaction on inputs that are homomorphically equivalent to structures of bounded treewidth.
Constraint Satisfaction Problems And Finite Algebras
, 1999
"... Many natural combinatorial problems can be expressed as constraint satisfaction problems. This class of problems is known to be NPcomplete in general, but certain restrictions on the form of the constraints can ensure tractability. In this paper we show that any restricted set of constraint types c ..."
Abstract

Cited by 64 (9 self)
 Add to MetaCart
(Show Context)
Many natural combinatorial problems can be expressed as constraint satisfaction problems. This class of problems is known to be NPcomplete in general, but certain restrictions on the form of the constraints can ensure tractability. In this paper we show that any restricted set of constraint types can be associated with a finite universal algebra. We explore how the computational complexity of a restricted constraint satisfaction problem is connected to properties of the corresponding algebra. For this, we introduce a notion of `tractable algebra' and study how the tractability of an algebra relates to the tractability of its smaller derived algebras, including its subalgebras and homomorphic images. This allows us to significantly reduce the types of algebras which need to be investigated. Using these results we exhibit a common structural property of all known intractable constraint satisfaction problems. Finally, we classify all finite strictly simple surjective algebras wit...
Tractability and learnability arising from algebras with few subpowers
 In LICS’07
, 2007
"... A kedge operation ϕ on a finite set A is a k + 1ary operation that satisfies the identities ..."
Abstract

Cited by 53 (7 self)
 Add to MetaCart
(Show Context)
A kedge operation ϕ on a finite set A is a k + 1ary operation that satisfies the identities
A Survey of Tractable Constraint Satisfaction Problems
, 1997
"... In this report we discuss constraint satisfaction problems. These are problems in which values must be assigned to a collection of variables, subject to specified constraints. We focus specifically on problems in which the domain of possible values for each variable is finite. The report surveys the ..."
Abstract

Cited by 52 (5 self)
 Add to MetaCart
(Show Context)
In this report we discuss constraint satisfaction problems. These are problems in which values must be assigned to a collection of variables, subject to specified constraints. We focus specifically on problems in which the domain of possible values for each variable is finite. The report surveys the various conditions that have been shown to be sufficient to ensure tractability in these problems. These are broken down into three categories: ffl Conditions on the overall structure; ffl Conditions on the nature of the constraints; ffl Conditions on bounded pieces of the problem. 1 Introduction A constraint satisfaction problem is a way of expressing simultaneous requirements for values of variables. The study of constraint satisfaction problems was initiated by Montanari in 1974 [34], when he used them as a way of describing certain combinatorial problems arising in imageprocessing. It was quickly realised that the same general framework was applicable to a much wider class of probl...
Towards a Dichotomy Theorem for the Counting Constraint Satisfaction Problem
, 2006
"... The Counting Constraint Satisfaction Problem (#CSP) can be expressed as follows: given a set of variables, a set of values that can be taken by the variables, and a set of constraints specifying some restrictions on the values that can be taken simultaneously by some variables, determine the number ..."
Abstract

Cited by 51 (9 self)
 Add to MetaCart
The Counting Constraint Satisfaction Problem (#CSP) can be expressed as follows: given a set of variables, a set of values that can be taken by the variables, and a set of constraints specifying some restrictions on the values that can be taken simultaneously by some variables, determine the number of assignments of values to variables that satisfy all the constraints. The #CSP provides a general framework for numerous counting combinatorial problems including counting satisfying assignments to a propositional formula, counting graph homomorphisms, graph reliability and many others. This problem can be parametrized by the set of relations that may appear in a constraint. In this paper we start a systematic study of subclasses of the #CSP restricted in this way. The ultimate goal of this investigation is to distinguish those restricted subclasses of the #CSP which are solvable in polynomial time from those which are not. We show that the complexity of any restricted #CSP class on a finite domain can be deduced from the properties of polymorphisms of the allowed constraints, similar to that for the decision constraint satisfaction problem. Then we prove that if a subclass of the #CSP is solvable in polynomial time, then constraints allowed by the class satisfy some very restrictive condition: they need to have a Mal’tsev polymorphism, that is a ternary operation m(x, y, z) such that m(x, y, y) = m(y, y, x) = x. This condition uniformly explains many existing complexity results for particular cases of the #CSP, including the dichotomy results for the problem of counting graph homomorphisms, and it allows us to obtain new results.
The complexity of the counting constraint satisfaction problem
 In ICALP (1
, 2008
"... The Counting Constraint Satisfaction Problem (#CSP(H)) over a finite relational structureH can be expressed as follows: given a relational structure G over the same vocabulary, determine the number of homomorphisms from G toH. In this paper we characterize relational structuresH for which#CSP(H) can ..."
Abstract

Cited by 45 (7 self)
 Add to MetaCart
(Show Context)
The Counting Constraint Satisfaction Problem (#CSP(H)) over a finite relational structureH can be expressed as follows: given a relational structure G over the same vocabulary, determine the number of homomorphisms from G toH. In this paper we characterize relational structuresH for which#CSP(H) can be solved in polynomial time and prove that for all other structures the problem is #Pcomplete. 1
The Complexity Of Maximal Constraint Languages
, 2001
"... Many combinatorial search problems can be expressed as "constraint satisfaction problems" using an appropriate "constraint language", that is, a set of relations over some fixed finite set of values. It is wellknown that there is a tradeoff between the expressive power of a con ..."
Abstract

Cited by 38 (9 self)
 Add to MetaCart
Many combinatorial search problems can be expressed as "constraint satisfaction problems" using an appropriate "constraint language", that is, a set of relations over some fixed finite set of values. It is wellknown that there is a tradeoff between the expressive power of a constraint language and the complexity of the problems it can express. In the present paper we systematically study the complexity of all maximal constraint languages, that is, languages whose expressive power is just weaker than that of the language of all constraints. Using the algebraic invariance properties of constraints, we exhibit a strong necessary condition for tractability of such a constraint language. Moreover, we show that, at least for small sets of values, this condition is also sufficient.
Universal algebra and hardness results for constraint satisfaction problems
, 2007
"... Abstract. We present algebraic conditions on constraint languages Γ that ensure the hardness of the constraint satisfaction problem CSP(Γ) for complexity classes L, NL, P, NP and ModpL. These criteria also give nonexpressibility results for various restrictions of Datalog. Furthermore, we show tha ..."
Abstract

Cited by 36 (7 self)
 Add to MetaCart
(Show Context)
Abstract. We present algebraic conditions on constraint languages Γ that ensure the hardness of the constraint satisfaction problem CSP(Γ) for complexity classes L, NL, P, NP and ModpL. These criteria also give nonexpressibility results for various restrictions of Datalog. Furthermore, we show that if CSP(Γ) is not firstorder definable then it is Lhard. Our proofs rely on tame congruence theory and on a finegrain analysis of the complexity of reductions used in the algebraic study of CSP. The results pave the way for a refinement of the dichotomy conjecture stating that each CSP(Γ) lies in P or is NPcomplete and they match the recent classification of [2] for Boolean CSP. We also infer a partial classification theorem for the complexity of CSP(Γ) when the associated algebra of Γ is the full idempotent reduct of a preprimal algebra. Constraint satisfaction problems (CSP) provide a unifying framework to study various computational problems arising naturally in artificial intelligence, combinatorial optimization, graph homomorphisms and database theory. An in
A characterisation of firstorder constraint satisfaction problems
 LOGICAL METHODS COMPUT. SCI
, 2007
"... We describe simple algebraic and combinatorial characterisations of finite relational core structures admitting finitely many obstructions. As a consequence, we show that it is decidable to determine whether a constraint satisfaction problem is firstorder definable: we show the general problem to ..."
Abstract

Cited by 35 (11 self)
 Add to MetaCart
We describe simple algebraic and combinatorial characterisations of finite relational core structures admitting finitely many obstructions. As a consequence, we show that it is decidable to determine whether a constraint satisfaction problem is firstorder definable: we show the general problem to be NPcomplete, and give a polynomialtime algorithm in the case of cores. A slight modification of this algorithm provides, for firstorder definable CSP’s, a simple polytime algorithm to produce a solution when one exists. As an application of our algebraic characterisation of first order CSP’s, we describe a large family of Lcomplete CSP’s.