Results 1 
2 of
2
Formalized mathematics
 TURKU CENTRE FOR COMPUTER SCIENCE
, 1996
"... It is generally accepted that in principle it’s possible to formalize completely almost all of presentday mathematics. The practicability of actually doing so is widely doubted, as is the value of the result. But in the computer age we believe that such formalization is possible and desirable. In c ..."
Abstract

Cited by 23 (0 self)
 Add to MetaCart
It is generally accepted that in principle it’s possible to formalize completely almost all of presentday mathematics. The practicability of actually doing so is widely doubted, as is the value of the result. But in the computer age we believe that such formalization is possible and desirable. In contrast to the QED Manifesto however, we do not offer polemics in support of such a project. We merely try to place the formalization of mathematics in its historical perspective, as well as looking at existing praxis and identifying what we regard as the most interesting issues, theoretical and practical.
Checking Textbook Proofs
 Int. Workshop on FirstOrder Theorem Proving (FTP'98), Technical Report E1852GS981
, 1998
"... . Our longrange goal is to implement a program for the machine verification of textbook proofs. We study the task from both the linguistics and deduction perspective and give an indepth analysis for a sample textbook proof. A three phase model for proof understanding is developed: parsing, str ..."
Abstract
 Add to MetaCart
. Our longrange goal is to implement a program for the machine verification of textbook proofs. We study the task from both the linguistics and deduction perspective and give an indepth analysis for a sample textbook proof. A three phase model for proof understanding is developed: parsing, structuring and refining. It shows that the combined application of techniques from both NLP and AR is quite successful. Moreover, it allows to uncover interesting insights that might initiate progress in both AI disciplines. Keywords: automated reasoning, natural language processing, discourse analysis 1 Introduction In [12], John McCarthy notes that "Checking mathematical proofs is potentially one of the most interesting and useful applications of automatic computers". In the first half of the 1960s, one of his students, namely Paul Abrahams, implemented a Lisp program for the machine verification of mathematical proofs [1]. The program, named Proofchecker, "was primarily directed towar...