Results 1  10
of
49
A Gröbner free alternative for polynomial system solving
 Journal of Complexity
, 2001
"... Given a system of polynomial equations and inequations with coefficients in the field of rational numbers, we show how to compute a geometric resolution of the set of common roots of the system over the field of complex numbers. A geometric resolution consists of a primitive element of the algebraic ..."
Abstract

Cited by 82 (16 self)
 Add to MetaCart
Given a system of polynomial equations and inequations with coefficients in the field of rational numbers, we show how to compute a geometric resolution of the set of common roots of the system over the field of complex numbers. A geometric resolution consists of a primitive element of the algebraic extension defined by the set of roots, its minimal polynomial and the parametrizations of the coordinates. Such a representation of the solutions has a long history which goes back to Leopold Kronecker and has been revisited many times in computer algebra. We introduce a new generation of probabilistic algorithms where all the computations use only univariate or bivariate polynomials. We give a new codification of the set of solutions of a positive dimensional algebraic variety relying on a new global version of Newton’s iterator. Roughly speaking the complexity of our algorithm is polynomial in some kind of degree of the system, in its height, and linear in the complexity of evaluation
Factorization of Polynomials Given by StraightLine Programs
 Randomness and Computation
, 1989
"... An algorithm is developed for the factorization of a multivariate polynomial represented by traightline program into its irreducible factors. The algorithm is in random polynomialtime as a function in the input size, total degree, and binary coefficient length for the usual coefficient fields and ..."
Abstract

Cited by 29 (9 self)
 Add to MetaCart
An algorithm is developed for the factorization of a multivariate polynomial represented by traightline program into its irreducible factors. The algorithm is in random polynomialtime as a function in the input size, total degree, and binary coefficient length for the usual coefficient fields and outputs a straightline program, which with controllably high probability correctly determines the irreducible factors. It also returns the probably correct multiplicities of each distinct factor. If th oefficient field has finite characteristic p and p divides the multiplicities of some irreducible factors our algorithm constructs straightline programs for the appropriate pth powers of such factors. Also a probabilistic algorithm is presented that allows to convert a polynomial given by a straightline program into its sparse representation. This conversion algorithm is in randompolynomial time in the previously cited parameters and in an upper bound for the number of nonzero...
On the TimeSpace Complexity of Geometric Elimination Procedures
, 1999
"... In [25] and [22] a new algorithmic concept was introduced for the symbolic solution of a zero dimensional complete intersection polynomial equation system satisfying a certain generic smoothness condition. The main innovative point of this algorithmic concept consists in the introduction of a new ge ..."
Abstract

Cited by 23 (16 self)
 Add to MetaCart
In [25] and [22] a new algorithmic concept was introduced for the symbolic solution of a zero dimensional complete intersection polynomial equation system satisfying a certain generic smoothness condition. The main innovative point of this algorithmic concept consists in the introduction of a new geometric invariant, called the degree of the input system, and the proof that the most common elimination problems have time complexity which is polynomial in this degree and the length of the input.
Computing Parametric Geometric Resolutions
, 2001
"... Given a polynomial system of n equations in n unknowns that depends on some parameters, we de ne the notion of parametric geometric resolution as a means to represent some generic solutions in terms of the parameters. The coefficients of this resolution are rational functions of the parameters; we f ..."
Abstract

Cited by 20 (7 self)
 Add to MetaCart
Given a polynomial system of n equations in n unknowns that depends on some parameters, we de ne the notion of parametric geometric resolution as a means to represent some generic solutions in terms of the parameters. The coefficients of this resolution are rational functions of the parameters; we first show that their degree is bounded by the Bézout number d n , where d is a bound on the degrees of the input system. We then present a probabilistic algorithm to compute such a resolution; in short, its complexity is polynomial in the size of the output and the probability of success is controlled by a quantity polynomial in the Bézout number. We present several applications of this process, to computations in the Jacobian of hyperelliptic curves and to questions of real geometry.
Fast Computation of Special Resultants
, 2006
"... We propose fast algorithms for computing composed products and composed sums, as well as diamond products of univariate polynomials. These operations correspond to special multivariate resultants, that we compute using power sums of roots of polynomials, by means of their generating series. ..."
Abstract

Cited by 20 (8 self)
 Add to MetaCart
We propose fast algorithms for computing composed products and composed sums, as well as diamond products of univariate polynomials. These operations correspond to special multivariate resultants, that we compute using power sums of roots of polynomials, by means of their generating series.
Nagata rings, Kronecker function rings and related semistar operations
 Comm. Algebra
"... Abstract. In 1994, Matsuda and Okabe introduced the notion of semistar operation. This concept extends the classical concept of star operation (cf. for instance, Gilmer’s book [20]) and, hence, the related classical theory of ideal systems based on the works by W. Krull, E. Noether, H. Prüfer and P. ..."
Abstract

Cited by 17 (12 self)
 Add to MetaCart
Abstract. In 1994, Matsuda and Okabe introduced the notion of semistar operation. This concept extends the classical concept of star operation (cf. for instance, Gilmer’s book [20]) and, hence, the related classical theory of ideal systems based on the works by W. Krull, E. Noether, H. Prüfer and P. Lorenzen from 1930’s. In [17] and [18] the current authors investigated properties of the Kronecker function rings which arise from arbitrary semistar operations on an integral domain D. In this paper we extend that study and also generalize Kang’s notion of a star Nagata ring [30] and [31] to the semistar setting. Our principal focuses are the similarities between the ideal structure of the Nagata and Kronecker semistar rings and between the natural semistar operations that these two types of function rings give rise to on D. 1.
Kronecker's Smart, Little Black Boxes
"... This paper is devoted to the complexity analysis of certain uniformity properties owned by all known symbolic methods of parametric polynomial equation solving (geometric elimination). It is shown that any parametric elimination procedure which is parsimonious with respect to branchings and division ..."
Abstract

Cited by 17 (5 self)
 Add to MetaCart
This paper is devoted to the complexity analysis of certain uniformity properties owned by all known symbolic methods of parametric polynomial equation solving (geometric elimination). It is shown that any parametric elimination procedure which is parsimonious with respect to branchings and divisions must necessarily have a nonpolynomial sequential time complexity, even if highly ecient data structures (as e.g. the arithmetic circuit encoding of polynomials) are used.
The Hardness of Polynomial Equation Solving
, 2003
"... Elimination theory is at the origin of algebraic geometry in the 19th century and deals with algorithmic solving of multivariate polynomial equation systems over the complex numbers, or, more generally, over an arbitrary algebraically closed field. In this paper we investigate the intrinsic seq ..."
Abstract

Cited by 17 (9 self)
 Add to MetaCart
Elimination theory is at the origin of algebraic geometry in the 19th century and deals with algorithmic solving of multivariate polynomial equation systems over the complex numbers, or, more generally, over an arbitrary algebraically closed field. In this paper we investigate the intrinsic sequential time complexity of universal elimination procedures for arbitrary continuous data structures encoding input and output objects of elimination theory (i.e. polynomial equation systems) and admitting the representation of certain limit objects.
Fast algorithms for zerodimensional polynomial systems using duality
 APPLICABLE ALGEBRA IN ENGINEERING, COMMUNICATION AND COMPUTING
, 2001
"... Many questions concerning a zerodimensional polynomial system can be reduced to linear algebra operations in the quotient algebra A = k[X1,..., Xn]/I, where I is the ideal generated by the input system. Assuming that the multiplicative structure of the algebra A is (partly) known, we address the q ..."
Abstract

Cited by 16 (3 self)
 Add to MetaCart
Many questions concerning a zerodimensional polynomial system can be reduced to linear algebra operations in the quotient algebra A = k[X1,..., Xn]/I, where I is the ideal generated by the input system. Assuming that the multiplicative structure of the algebra A is (partly) known, we address the question of speeding up the linear algebra phase for the computation of minimal polynomials and rational parametrizations in A. We present new formulæ for the rational parametrizations, extending those of Rouillier, and algorithms extending ideas introduced by Shoup in the univariate case. Our approach is based on the Amodule structure of the dual space � A. An important feature of our algorithms is that we do not require � A to be free and of rank 1. The complexity of our algorithms for computing the minimal polynomial and the rational parametrizations are O(2 n D 5/2) and O(n2 n D 5/2) respectively, where D is the dimension of A. For fixed n, this is better than algorithms based on linear algebra except when the complexity of the available matrix product has exponent less than 5/2.
Fast Multivariate Power Series Multiplication in Characteristic Zero
 SADIO Electronic Journal on Informatics and Operations Research
, 2001
"... Let k be a eld of characteristic zero. We present a fast algorithm for multiplying multivariate power series over k truncated in total degree. Up to logarithmic factors, its complexity is optimal, i.e. linear in the number of coecients of the series. 1. ..."
Abstract

Cited by 16 (6 self)
 Add to MetaCart
Let k be a eld of characteristic zero. We present a fast algorithm for multiplying multivariate power series over k truncated in total degree. Up to logarithmic factors, its complexity is optimal, i.e. linear in the number of coecients of the series. 1.