Results 1  10
of
13
A Gröbner free alternative for polynomial system solving
 Journal of Complexity
, 2001
"... Given a system of polynomial equations and inequations with coefficients in the field of rational numbers, we show how to compute a geometric resolution of the set of common roots of the system over the field of complex numbers. A geometric resolution consists of a primitive element of the algebraic ..."
Abstract

Cited by 82 (17 self)
 Add to MetaCart
Given a system of polynomial equations and inequations with coefficients in the field of rational numbers, we show how to compute a geometric resolution of the set of common roots of the system over the field of complex numbers. A geometric resolution consists of a primitive element of the algebraic extension defined by the set of roots, its minimal polynomial and the parametrizations of the coordinates. Such a representation of the solutions has a long history which goes back to Leopold Kronecker and has been revisited many times in computer algebra. We introduce a new generation of probabilistic algorithms where all the computations use only univariate or bivariate polynomials. We give a new codification of the set of solutions of a positive dimensional algebraic variety relying on a new global version of Newton’s iterator. Roughly speaking the complexity of our algorithm is polynomial in some kind of degree of the system, in its height, and linear in the complexity of evaluation
When polynomial equation systems can be "solved" fast?
 IN PROC. 11TH INTERNATIONAL SYMPOSIUM APPLIED ALGEBRA, ALGEBRAIC ALGORITHMS AND ERRORCORRECTING CODES, AAECC11
, 1995
"... We present a new method for solving symbolically zerodimensional polynomial equation systems in the affine and toric case. The main feature of our method is the use of an alternative data structure: arithmetic networks and straightline programs with FOR gates. For sequential time complexity measu ..."
Abstract

Cited by 61 (19 self)
 Add to MetaCart
We present a new method for solving symbolically zerodimensional polynomial equation systems in the affine and toric case. The main feature of our method is the use of an alternative data structure: arithmetic networks and straightline programs with FOR gates. For sequential time complexity measured by the size of these networks we obtain the following result: it is possible to solve any affine or toric zerodimensional equation system in nonuniform sequential time which is polynomial in the length of the input description and the "geometric degree " of the equation system. Here, the input is thought to be given by a straightline program (or alternatively in sparse representation), and the length of the input is measured by number of variables, degree of equations and size of the program (or sparsity of the equations). Geometric degree has to be adequately defined. It is always bounded by the algebraiccombinatoric "B'ezout number " of the system which is given by the Hilbert function of a suitable homogeneous ideal. However, in many important cases, the value of the geometric degree is much smaller than
Computing the equidimensional decomposition of an algebraic closed set by means of lifting fibers
 J. Complexity
, 2000
"... We present a new probabilistic method for solving systems of polynomial equations and inequations. Our algorithm computes the equidimensional decomposition of the Zariski closure of the solution set of such systems. Each equidimensional component is encoded by a generic fiber, that is a finite set o ..."
Abstract

Cited by 57 (2 self)
 Add to MetaCart
We present a new probabilistic method for solving systems of polynomial equations and inequations. Our algorithm computes the equidimensional decomposition of the Zariski closure of the solution set of such systems. Each equidimensional component is encoded by a generic fiber, that is a finite set of points obtained from the intersection of the component with a generic transverse affine subspace. Our algorithm is incremental in the number of equations to be solved. Its complexity is mainly cubic in the maximum of the degrees of the solution sets of the intermediate systems counting multiplicities. Our method is designed for coefficient fields having characteristic zero or big enough with respect to the number of solutions. If the base field is the field of the rational numbers then the resolution is first performed modulo a random prime number after we have applied a random change of coordinates. Then we search for coordinates with small integers and lift the solutions up to the rational numbers. Our implementation is available within our package Kronecker from version 0.166, which is written in the Magma computer algebra system. 1
Straightline programs in geometric elimination theory
 J. Pure Appl. Algebra
, 1998
"... Dedicated to Volker Strassen for his work on complexity We present a new method for solving symbolically zero–dimensional polynomial equation systems in the affine and toric case. The main feature of our method is the use of problem adapted data structures: arithmetic networks and straight–line prog ..."
Abstract

Cited by 57 (14 self)
 Add to MetaCart
Dedicated to Volker Strassen for his work on complexity We present a new method for solving symbolically zero–dimensional polynomial equation systems in the affine and toric case. The main feature of our method is the use of problem adapted data structures: arithmetic networks and straight–line programs. For sequential time complexity measured by network size we obtain the following result: it is possible to solve any affine or toric zero–dimensional equation system in non–uniform sequential time which is polynomial in the length of the input description and the “geometric degree ” of the equation system. Here, the input is thought to be given by a straight–line program (or alternatively in sparse representation), and the length of the input is measured by number of variables, degree of equations and size of the program (or sparsity of the equations). The geometric degree of the input system has to be adequately defined. It is always bounded by the algebraic–combinatoric “Bézout number ” of the system which is given by the Hilbert function of a suitable homogeneous ideal. However, in many important cases, the value of the geometric
On the TimeSpace Complexity of Geometric Elimination Procedures
, 1999
"... In [25] and [22] a new algorithmic concept was introduced for the symbolic solution of a zero dimensional complete intersection polynomial equation system satisfying a certain generic smoothness condition. The main innovative point of this algorithmic concept consists in the introduction of a new ge ..."
Abstract

Cited by 24 (17 self)
 Add to MetaCart
In [25] and [22] a new algorithmic concept was introduced for the symbolic solution of a zero dimensional complete intersection polynomial equation system satisfying a certain generic smoothness condition. The main innovative point of this algorithmic concept consists in the introduction of a new geometric invariant, called the degree of the input system, and the proof that the most common elimination problems have time complexity which is polynomial in this degree and the length of the input.
The Hardness of Polynomial Equation Solving
, 2003
"... Elimination theory is at the origin of algebraic geometry in the 19th century and deals with algorithmic solving of multivariate polynomial equation systems over the complex numbers, or, more generally, over an arbitrary algebraically closed field. In this paper we investigate the intrinsic seq ..."
Abstract

Cited by 18 (10 self)
 Add to MetaCart
Elimination theory is at the origin of algebraic geometry in the 19th century and deals with algorithmic solving of multivariate polynomial equation systems over the complex numbers, or, more generally, over an arbitrary algebraically closed field. In this paper we investigate the intrinsic sequential time complexity of universal elimination procedures for arbitrary continuous data structures encoding input and output objects of elimination theory (i.e. polynomial equation systems) and admitting the representation of certain limit objects.
The projective Noether Maple package: computing the dimension of a projective variety. Manuscript available at ftp://medicis.polytechnique.fr/pub/publications/lecerf
"... Recent theoretical advances in elimination theory use straightline programs as a datastructure to represent multivariate polynomials. We present here the Projective Noether Package which is a Maple implementation of one of these new algorithms, yielding as a byproduct a computation of the dimension ..."
Abstract

Cited by 7 (2 self)
 Add to MetaCart
Recent theoretical advances in elimination theory use straightline programs as a datastructure to represent multivariate polynomials. We present here the Projective Noether Package which is a Maple implementation of one of these new algorithms, yielding as a byproduct a computation of the dimension of a projective variety. Comparative results on benchmarks for time and space of several families of multivariate polynomial equation systems are given and we point out both weaknesses and advantages of different approaches.
DEFORMATION TECHNIQUES FOR SPARSE SYSTEMS
, 2006
"... Abstract. We exhibit a probabilistic symbolic algorithm for solving zero– dimensional sparse systems. Our algorithm combines a symbolic homotopy procedure, based on a flat deformation of a certain morphism of affine varieties, with the polyhedral deformation of Huber and Sturmfels. The complexity of ..."
Abstract

Cited by 3 (1 self)
 Add to MetaCart
Abstract. We exhibit a probabilistic symbolic algorithm for solving zero– dimensional sparse systems. Our algorithm combines a symbolic homotopy procedure, based on a flat deformation of a certain morphism of affine varieties, with the polyhedral deformation of Huber and Sturmfels. The complexity of our algorithm is quadratic in the size of the combinatorial structure of the input system. This size is mainly represented by the mixed volume of Newton polytopes of the input polynomials and an arithmetic analogue of the mixed volume associated to the deformations under consideration. 1.
A New Method to Obtain Lower Bounds for Polynomial Evaluation
, 1999
"... We present a new method to obtain lower bounds for the time complexity of polynomial evaluation procedures. Time, denoted by L, is measured in terms of nonscalar arithmetic operations. In contrast with known methods for proving lower complexity bounds, our method is purely combinatorial and does not ..."
Abstract

Cited by 2 (2 self)
 Add to MetaCart
We present a new method to obtain lower bounds for the time complexity of polynomial evaluation procedures. Time, denoted by L, is measured in terms of nonscalar arithmetic operations. In contrast with known methods for proving lower complexity bounds, our method is purely combinatorial and does not require powerful tools from algebraic or diophantine geometry.
TimeSpace Tradeoffs in Algebraic Complexity
"... We exhibit a new method for showing lower bounds for timespace tradeoffs of polynomial evaluation procedures given by straightline programs. From the tradeoff results obtained by this method we deduce lower space bounds for polynomial evaluation procedures running in optimal nonscalar time. Time, ..."
Abstract

Cited by 2 (2 self)
 Add to MetaCart
We exhibit a new method for showing lower bounds for timespace tradeoffs of polynomial evaluation procedures given by straightline programs. From the tradeoff results obtained by this method we deduce lower space bounds for polynomial evaluation procedures running in optimal nonscalar time. Time, denoted by L, is measured in terms of nonscalar arithmetic operations and space, denoted by S, is measured by the maximal number of pebbles (registers) used during the given evaluation procedure. The timespace tradeoff function considered in this paper is LS². We show that for "almost all"...