Results 1  10
of
46
Dynamic Bayesian Networks: Representation, Inference and Learning
, 2002
"... Modelling sequential data is important in many areas of science and engineering. Hidden Markov models (HMMs) and Kalman filter models (KFMs) are popular for this because they are simple and flexible. For example, HMMs have been used for speech recognition and biosequence analysis, and KFMs have bee ..."
Abstract

Cited by 564 (3 self)
 Add to MetaCart
Modelling sequential data is important in many areas of science and engineering. Hidden Markov models (HMMs) and Kalman filter models (KFMs) are popular for this because they are simple and flexible. For example, HMMs have been used for speech recognition and biosequence analysis, and KFMs have been used for problems ranging from tracking planes and missiles to predicting the economy. However, HMMs
and KFMs are limited in their “expressive power”. Dynamic Bayesian Networks (DBNs) generalize HMMs by allowing the state space to be represented in factored form, instead of as a single discrete random variable. DBNs generalize KFMs by allowing arbitrary probability distributions, not just (unimodal) linearGaussian. In this thesis, I will discuss how to represent many different kinds of models as DBNs, how to perform exact and approximate inference in DBNs, and how to learn DBN models from sequential data.
In particular, the main novel technical contributions of this thesis are as follows: a way of representing
Hierarchical HMMs as DBNs, which enables inference to be done in O(T) time instead of O(T 3), where T is the length of the sequence; an exact smoothing algorithm that takes O(log T) space instead of O(T); a simple way of using the junction tree algorithm for online inference in DBNs; new complexity bounds on exact online inference in DBNs; a new deterministic approximate inference algorithm called factored frontier; an analysis of the relationship between the BK algorithm and loopy belief propagation; a way of
applying RaoBlackwellised particle filtering to DBNs in general, and the SLAM (simultaneous localization
and mapping) problem in particular; a way of extending the structural EM algorithm to DBNs; and a variety of different applications of DBNs. However, perhaps the main value of the thesis is its catholic presentation of the field of sequential data modelling.
Hybrid Bayesian Networks for Reasoning about Complex Systems
, 2002
"... Many realworld systems are naturally modeled as hybrid stochastic processes, i.e., stochastic processes that contain both discrete and continuous variables. Examples include speech recognition, target tracking, and monitoring of physical systems. The task is usually to perform probabilistic inferen ..."
Abstract

Cited by 48 (0 self)
 Add to MetaCart
Many realworld systems are naturally modeled as hybrid stochastic processes, i.e., stochastic processes that contain both discrete and continuous variables. Examples include speech recognition, target tracking, and monitoring of physical systems. The task is usually to perform probabilistic inference, i.e., infer the hidden state of the system given some noisy observations. For example, we can ask what is the probability that a certain word was pronounced given the readings of our microphone, what is the probability that a submarine is trying to surface given our sonar data, and what is the probability of a valve being open given our pressure and flow readings. Bayesian networks are
Budgeted learning of naivebayes classifiers
 IN PROCEEDINGS OF 19TH CONFERENCE ON UNCERTAINTY IN ARTIFICIAL INTELLIGENCE (UAI2003
, 2003
"... There is almost always a cost associated with acquiring training data. We consider the situation where the learner, with a fixed budget, may ‘purchase ’ data during training. In particular, we examine the case where observing the value of a feature of a training example has an associated cost, and t ..."
Abstract

Cited by 42 (3 self)
 Add to MetaCart
There is almost always a cost associated with acquiring training data. We consider the situation where the learner, with a fixed budget, may ‘purchase ’ data during training. In particular, we examine the case where observing the value of a feature of a training example has an associated cost, and the total cost of all feature values acquired during training must remain less than this fixed budget. This paper compares methods for sequentially choosing which feature value to purchase next, given the budget and user’s current knowledge of Naïve Bayes model parameters. Whereas active learning has traditionally focused on myopic (greedy) approaches and uniform/roundrobin policies for query selection, this paper shows that such methods are often suboptimal and presents a tractable method for incorporating knowledge of the budget in the information acquisition process.
Active Learning of Causal Bayes Net Structure
, 2001
"... We propose a decision theoretic approach for deciding which interventions to perform so as to learn the causal structure of a model as quickly as possible. Without such interventions, it is impossible to distinguish between Markov equivalent models, even given infinite data. We perform online MCMC t ..."
Abstract

Cited by 37 (2 self)
 Add to MetaCart
We propose a decision theoretic approach for deciding which interventions to perform so as to learn the causal structure of a model as quickly as possible. Without such interventions, it is impossible to distinguish between Markov equivalent models, even given infinite data. We perform online MCMC to estimate the posterior over graph structures, and use importance sampling to find the best action to perform at each step. We assume the data is discretevalued and fully observed.
Learning forward models for robots
 in Proceedings of IJCAI
, 2005
"... Forward models enable a robot to predict the effects of its actions on its own motor system and its environment. This is a vital aspect of intelligent behaviour, as the robot can use predictions to decide the best set of actions to achieve a goal. The ability to learn forward models enables robots t ..."
Abstract

Cited by 33 (6 self)
 Add to MetaCart
Forward models enable a robot to predict the effects of its actions on its own motor system and its environment. This is a vital aspect of intelligent behaviour, as the robot can use predictions to decide the best set of actions to achieve a goal. The ability to learn forward models enables robots to be more adaptable and autonomous; this paper describes a system whereby they can be learnt and represented as a Bayesian network. The robot’s motor system is controlled and explored using ‘motor babbling’. Feedback about its motor system comes from computer vision techniques requiring no prior information to perform tracking. The learnt forward model can be used by the robot to imitate human movement. 1
Exact bayesian structure learning from uncertain interventions
 AI & Statistics, In
, 2007
"... We show how to apply the dynamic programming algorithm of Koivisto and Sood [KS04, Koi06], which computes the exact posterior marginal edge probabilities p(Gij = 1D) of a DAG G given data D, to the case where the data is obtained by interventions (experiments). In particular, we consider the case w ..."
Abstract

Cited by 24 (5 self)
 Add to MetaCart
We show how to apply the dynamic programming algorithm of Koivisto and Sood [KS04, Koi06], which computes the exact posterior marginal edge probabilities p(Gij = 1D) of a DAG G given data D, to the case where the data is obtained by interventions (experiments). In particular, we consider the case where the targets of the interventions are a priori unknown. We show that it is possible to learn the targets of intervention at the same time as learning the causal structure. We apply our exact technique to a biological data set that had previously been analyzed using MCMC [SPP + 05, EW06, WGH06]. 1
On Active Learning for Data Acquisition
, 2002
"... Many applications are characterized by having naturally incomplete data on customers  where data on only some fixed set of local variables is gathered. However, having a more complete picture can help build better models. The nave solution to this problem  acquiring complete data for all custome ..."
Abstract

Cited by 18 (0 self)
 Add to MetaCart
Many applications are characterized by having naturally incomplete data on customers  where data on only some fixed set of local variables is gathered. However, having a more complete picture can help build better models. The nave solution to this problem  acquiring complete data for all customers  is often impractical due to the costs of doing so. A possible alternative is to acquire complete data for "some" customers and to use this to improve the models built. The data acquisition problem is determining how many, and which, customers to acquire additional data from. In this paper we suggest using active learning based approaches for the data acquisition problem. In particular, we present initial methods for data acquisition and evaluate these methods experimentally on web usage data and UCI datasets. Results show that the methods perform well and indicate that active learning based methods for data acquisition can be a promising area for data mining research.
Bayesian approaches to associative learning: From passive to active learning
 Learning & Behavior
, 2008
"... Traditional associationist models represent an organism’s knowledge state by a single strength of association on each associative link. Bayesian models instead represent knowledge by a distribution of graded degrees of belief over a range of candidate hypotheses. Many traditional associationist mode ..."
Abstract

Cited by 18 (7 self)
 Add to MetaCart
Traditional associationist models represent an organism’s knowledge state by a single strength of association on each associative link. Bayesian models instead represent knowledge by a distribution of graded degrees of belief over a range of candidate hypotheses. Many traditional associationist models assume that the learner is passive, adjusting strengths of association only in reaction to stimuli delivered by the environment. Bayesian models, on the other hand, can describe how the learner should actively probe the environment to learn optimally. The first part of this article reviews two Bayesian accounts of backward blocking, a phenomenon that is challenging for many traditional theories. The broad Bayesian framework, in which these models reside, is also selectively reviewed. The second part focuses on two formalizations of optimal active learning: maximizing either the expected information gain or the probability gain. New analyses of optimal active learning by a Kalman filter and by a noisylogic gate show that these two Bayesian models make different predictions for some environments. The Kalman filter predictions are disconfirmed in at least one case. Bayesian formalizations of learning are a revolutionary advance over traditional approaches. Bayesian models assume that the learner maintains multiple candidate hypotheses with differing degrees of belief, unlike traditional
Efficient markov network structure discovery using independence tests
 In Proc SIAM Data Mining
, 2006
"... We present two algorithms for learning the structure of a Markov network from discrete data: GSMN and GSIMN. Both algorithms use statistical conditional independence tests on data to infer the structure by successively constraining the set of structures consistent with the results of these tests. GS ..."
Abstract

Cited by 17 (2 self)
 Add to MetaCart
We present two algorithms for learning the structure of a Markov network from discrete data: GSMN and GSIMN. Both algorithms use statistical conditional independence tests on data to infer the structure by successively constraining the set of structures consistent with the results of these tests. GSMN is a natural adaptation of the GrowShrink algorithm of Margaritis and Thrun for learning the structure of Bayesian networks. GSIMN extends GSMN by additionally exploiting Pearl’s wellknown properties of conditional independence relations to infer novel independencies from known independencies, thus avoiding the need to perform these tests. Experiments on artificial and real data sets show GSIMN can yield savings of up to 70 % with respect to GSMN, while generating a Markov network with comparable or in several cases considerably improved quality. In addition
Reconstruction of gene networks using Bayesian learning and manipulation experiments
 Bioinformatics
, 2004
"... learning and manipulation experiments ..."