Results 1  10
of
51
Dynamic Bayesian Networks: Representation, Inference and Learning
, 2002
"... Modelling sequential data is important in many areas of science and engineering. Hidden Markov models (HMMs) and Kalman filter models (KFMs) are popular for this because they are simple and flexible. For example, HMMs have been used for speech recognition and biosequence analysis, and KFMs have bee ..."
Abstract

Cited by 565 (3 self)
 Add to MetaCart
Modelling sequential data is important in many areas of science and engineering. Hidden Markov models (HMMs) and Kalman filter models (KFMs) are popular for this because they are simple and flexible. For example, HMMs have been used for speech recognition and biosequence analysis, and KFMs have been used for problems ranging from tracking planes and missiles to predicting the economy. However, HMMs
and KFMs are limited in their “expressive power”. Dynamic Bayesian Networks (DBNs) generalize HMMs by allowing the state space to be represented in factored form, instead of as a single discrete random variable. DBNs generalize KFMs by allowing arbitrary probability distributions, not just (unimodal) linearGaussian. In this thesis, I will discuss how to represent many different kinds of models as DBNs, how to perform exact and approximate inference in DBNs, and how to learn DBN models from sequential data.
In particular, the main novel technical contributions of this thesis are as follows: a way of representing
Hierarchical HMMs as DBNs, which enables inference to be done in O(T) time instead of O(T 3), where T is the length of the sequence; an exact smoothing algorithm that takes O(log T) space instead of O(T); a simple way of using the junction tree algorithm for online inference in DBNs; new complexity bounds on exact online inference in DBNs; a new deterministic approximate inference algorithm called factored frontier; an analysis of the relationship between the BK algorithm and loopy belief propagation; a way of
applying RaoBlackwellised particle filtering to DBNs in general, and the SLAM (simultaneous localization
and mapping) problem in particular; a way of extending the structural EM algorithm to DBNs; and a variety of different applications of DBNs. However, perhaps the main value of the thesis is its catholic presentation of the field of sequential data modelling.
Expectation propagation for approximate inference in dynamic Bayesian networks
 In Proceedings UAI
, 2002
"... We describe expectation propagation for approximate inference in dynamic Bayesian networks as a natural extension of Pearl's exact belief propagation. Expectation propagation is a greedy algorithm, converges in many practical cases, but not always. We derive a doubleloop algorithm, guaranteed to co ..."
Abstract

Cited by 51 (10 self)
 Add to MetaCart
We describe expectation propagation for approximate inference in dynamic Bayesian networks as a natural extension of Pearl's exact belief propagation. Expectation propagation is a greedy algorithm, converges in many practical cases, but not always. We derive a doubleloop algorithm, guaranteed to converge to a local minimum of a Bethe free energy. Furthermore, we show that stable fixed points of (damped) expectation propagation correspond to local minima of this free energy, but that the converse need not be the case. We illustrate the algorithms by applying them to switching linear dynamical systems and discuss implications for approximate inference in general Bayesian networks.
Hybrid Bayesian Networks for Reasoning about Complex Systems
, 2002
"... Many realworld systems are naturally modeled as hybrid stochastic processes, i.e., stochastic processes that contain both discrete and continuous variables. Examples include speech recognition, target tracking, and monitoring of physical systems. The task is usually to perform probabilistic inferen ..."
Abstract

Cited by 48 (0 self)
 Add to MetaCart
Many realworld systems are naturally modeled as hybrid stochastic processes, i.e., stochastic processes that contain both discrete and continuous variables. Examples include speech recognition, target tracking, and monitoring of physical systems. The task is usually to perform probabilistic inference, i.e., infer the hidden state of the system given some noisy observations. For example, we can ask what is the probability that a certain word was pronounced given the readings of our microphone, what is the probability that a submarine is trying to surface given our sonar data, and what is the probability of a valve being open given our pressure and flow readings. Bayesian networks are
Optimal nonmyopic value of information in graphical models  efficient algorithms and theoretical limits
 In Proc. of IJCAI
, 2005
"... Many realworld decision making tasks require us to choose among several expensive observations. In a sensor network, for example, it is important to select the subset of sensors that is expected to provide the strongest reduction in uncertainty. It has been general practice to use heuristicguided ..."
Abstract

Cited by 37 (5 self)
 Add to MetaCart
Many realworld decision making tasks require us to choose among several expensive observations. In a sensor network, for example, it is important to select the subset of sensors that is expected to provide the strongest reduction in uncertainty. It has been general practice to use heuristicguided procedures for selecting observations. In this paper, we present the first efficient optimal algorithms for selecting observations for a class of graphical models containing Hidden Markov Models (HMMs). We provide results for both selecting the optimal subset of observations, and for obtaining an optimal conditional observation plan. For both problems, we present algorithms for the filtering case, where only observations made in the past are taken into account, and the smoothing case, where all observations are utilized. Furthermore we prove a surprising result: In most graphical models tasks, if one designs an efficient algorithm for chain graphs, such as HMMs, this procedure can be generalized to polytrees. We prove that the value of information problem is NP PPhard even for discrete polytrees. It also follows from our results that even computing conditional entropies, which are widely used to measure value of information, is a #Pcomplete problem on polytrees. Finally, we demonstrate the effectiveness of our approach on several realworld datasets. 1
Hybrid Markov Logic Networks
"... Markov logic networks (MLNs) combine firstorder logic and Markov networks, allowing us to handle the complexity and uncertainty of realworld problems in a single consistent framework. However, in MLNs all variables and features are discrete, while most realworld applications also contain continuo ..."
Abstract

Cited by 28 (1 self)
 Add to MetaCart
Markov logic networks (MLNs) combine firstorder logic and Markov networks, allowing us to handle the complexity and uncertainty of realworld problems in a single consistent framework. However, in MLNs all variables and features are discrete, while most realworld applications also contain continuous ones. In this paper we introduce hybrid MLNs, in which continuous properties (e.g., the distance between two objects) and functions over them can appear as features. Hybrid MLNs have all distributions in the exponential family as special cases (e.g., multivariate Gaussians), and allow much more compact modeling of noni.i.d. data than propositional representations like hybrid Bayesian networks. We also introduce inference algorithms for hybrid MLNs, by extending the MaxWalkSAT and MCSAT algorithms to continuous domains. Experiments in a mobile robot mapping domain—involving joint classification, clustering and regression—illustrate the power of hybrid MLNs as a modeling language, and the accuracy and efficiency of the inference algorithms.
A Hybrid Graphical Model for Rhythmic Parsing
 In Proc. of 17th Conf. on Uncertainty in Artif. Int
, 2001
"... A method is presented for the rhythmic parsing problem: Given a sequence of observed musical note onset times, we simultaneously estimate the corresponding norated rhythm and tempo process. A graphical model is developed that represents the evolution of tempo and rhythm and relates these hidden q ..."
Abstract

Cited by 23 (3 self)
 Add to MetaCart
A method is presented for the rhythmic parsing problem: Given a sequence of observed musical note onset times, we simultaneously estimate the corresponding norated rhythm and tempo process. A graphical model is developed that represents the evolution of tempo and rhythm and relates these hidden quantities to an observable performance. The rhythm variables are discrete and the tempo and observation variables are continuous. We show how to compute the globally most likely configuration of the tempo and rhythm variables given an observation of note onset times. Experiments are presented on both MIDI data and a data set derived from an audio signal. A generalization to computing MAP estimates for arbitrary conditional Gaussian distributions is outlined.
Exact inference in networks with discrete children of continuous parents
 in: J. Breese, D. Koller (Eds.), Uncertainty in Artificial Intelligence
, 2001
"... Many real life domains contain a mixture of discrete and continuous variables and can be modeled as hybrid Bayesian Networks (BNs). An important subclass of hybrid BNs are conditional linear Gaussian (CLG) networks, where the conditional distribution of the continuous variables given an assignment t ..."
Abstract

Cited by 23 (2 self)
 Add to MetaCart
Many real life domains contain a mixture of discrete and continuous variables and can be modeled as hybrid Bayesian Networks (BNs). An important subclass of hybrid BNs are conditional linear Gaussian (CLG) networks, where the conditional distribution of the continuous variables given an assignment to the discrete variables is a multivariate Gaussian. Lauritzen’s extension to the clique tree algorithm can be used for exact inference in CLG networks. However, many domains include discrete variables that depend on continuous ones, and CLG networks do not allow such dependencies to be represented. In this paper, we propose the first “exact ” inference algorithm for augmented CLG networks — CLG networks augmented by allowing discrete children of continuous parents. Our algorithm is based on Lauritzen’s algorithm, and is exact in a similar sense: it computes the exact distributions over the discrete nodes, and the exact first and second moments of the continuous ones, up to inaccuracies resulting from numerical integration used within the algorithm. In the special case of softmax CPDs, we show that integration can often be done efficiently, and that using the first two moments leads to a particularly accurate approximation. We show empirically that our algorithm achieves substantially higher accuracy at lower cost than previous algorithms for this task. 1
Monitoring a complex physical system using a hybrid dynamic bayes net
 In UAI
, 2002
"... The Reverse Water Gas Shift system (RWGS) is a complex physical system designed to produce oxygen from the carbon dioxide atmosphere on Mars. If sent to Mars, it would operate without human supervision, thus requiring a reliable automated system for monitoring and control. The RWGS presents many cha ..."
Abstract

Cited by 22 (0 self)
 Add to MetaCart
The Reverse Water Gas Shift system (RWGS) is a complex physical system designed to produce oxygen from the carbon dioxide atmosphere on Mars. If sent to Mars, it would operate without human supervision, thus requiring a reliable automated system for monitoring and control. The RWGS presents many challenges typical of realworld systems, including: noisy and biased sensors, nonlinear behavior, effects that are manifested over different time granularities, and unobservability of many important quantities. In this paper we model the RWGS using a hybrid (discrete/continuous) Dynamic Bayesian Network (DBN), where the state at each time slice contains 33 discrete and 184 continuous variables. We show how the system state can be tracked using probabilistic inference over the model. We discuss how to deal with the various challenges presented by the RWGS, providing a suite of techniques that are likely to be useful in a wide range of applications. In particular, we describe a general framework for dealing with nonlinear behavior using numerical integration techniques, extending the successful Unscented Filter. We also show how to use a fixedpoint computation to deal with effects that develop at different time scales, specifically rapid changes occurring during slowly changing processes. We test our model using real data collected from the RWGS, demonstrating the feasibility of hybrid DBNs for monitoring complex realworld physical systems. 1
Probabilistic discovery of overlapping cellular processes and their regulation
 J Comput Biol
, 2004
"... Many of the functions carried out by a living cell are regulated at the transcriptional level, to ensure that genes are expressed when they are needed. Thus, to understand biological processes, it is thus necessary to understand the cell’s transcriptional network. In this paper, we propose a novel p ..."
Abstract

Cited by 19 (1 self)
 Add to MetaCart
Many of the functions carried out by a living cell are regulated at the transcriptional level, to ensure that genes are expressed when they are needed. Thus, to understand biological processes, it is thus necessary to understand the cell’s transcriptional network. In this paper, we propose a novel probabilistic model of gene regulation for the task of identifying overlapping biological processes and the regulatory mechanism controlling their activation. A key feature of our approach is that we allow genes to participate in multiple processes, thus providing a more biologically plausible model for the process of gene regulation. We present an algorithm to learn this model automatically from data, using only genomewide measurements of gene expression as input. We compare our results to those obtained by other approaches, and show significant benefits can be gained by modeling both the organization of genes into overlapping cellular processes and the regulatory programs of these processes. Moreover, our method successfully grouped genes known to function together, recovered many regulatory relationships that are known in the literature, and suggested novel hypotheses regarding the regulatory role of previously uncharacterized proteins.
Inference in Hybrid Bayesian Networks with Mixtures of Truncated Exponentials
, 2003
"... Mixtures of truncated exponentials (MTE) potentials are an alternative to discretization for solving hybrid Bayesian networks. Any probability density function can be approximated with an MTE potential, which can always by marginalized in closed form. This allows propagation to be done exactly us ..."
Abstract

Cited by 16 (2 self)
 Add to MetaCart
Mixtures of truncated exponentials (MTE) potentials are an alternative to discretization for solving hybrid Bayesian networks. Any probability density function can be approximated with an MTE potential, which can always by marginalized in closed form. This allows propagation to be done exactly using the ShenoyShafer architecture for computing marginals, with no restrictions on the construction of a join tree.