Results 1  10
of
254
Face Recognition: A Literature Survey
, 2000
"... ... This paper provides an uptodate critical survey of still and videobased face recognition research. There are two underlying motivations for us to write this survey paper: the first is to provide an uptodate review of the existing literature, and the second is to offer some insights into ..."
Abstract

Cited by 850 (21 self)
 Add to MetaCart
... This paper provides an uptodate critical survey of still and videobased face recognition research. There are two underlying motivations for us to write this survey paper: the first is to provide an uptodate review of the existing literature, and the second is to offer some insights into the studies of machine recognition of faces. To provide a comprehensive survey, we not only categorize existing recognition techniques but also present detailed descriptions of representative methods within each category. In addition,
Learning lowlevel vision
 International Journal of Computer Vision
, 2000
"... We show a learningbased method for lowlevel vision problems. We setup a Markov network of patches of the image and the underlying scene. A factorization approximation allows us to easily learn the parameters of the Markov network from synthetic examples of image/scene pairs, and to e ciently prop ..."
Abstract

Cited by 468 (25 self)
 Add to MetaCart
We show a learningbased method for lowlevel vision problems. We setup a Markov network of patches of the image and the underlying scene. A factorization approximation allows us to easily learn the parameters of the Markov network from synthetic examples of image/scene pairs, and to e ciently propagate image information. Monte Carlo simulations justify this approximation. We apply this to the \superresolution " problem (estimating high frequency details from a lowresolution image), showing good results. For the motion estimation problem, we show resolution of the aperture problem and llingin arising from application of the same probabilistic machinery.
Reflectance and texture of realworld surfaces
 ACM TRANS. GRAPHICS
, 1999
"... In this work, we investigate the visual appearance of realworld surfaces and the dependence of appearance on scale, viewing direction and illumination direction. At ne scale, surface variations cause local intensity variation or image texture. The appearance of this texture depends on both illumina ..."
Abstract

Cited by 450 (23 self)
 Add to MetaCart
In this work, we investigate the visual appearance of realworld surfaces and the dependence of appearance on scale, viewing direction and illumination direction. At ne scale, surface variations cause local intensity variation or image texture. The appearance of this texture depends on both illumination and viewing direction and can be characterized by the BTF (bidirectional texture function). At su ciently coarse scale, local image texture is not resolvable and local image intensity is uniform. The dependence of this image intensity on illumination and viewing direction is described by the BRDF (bidirectional re ectance distribution function). We simultaneously measure the BTF and BRDF of over 60 di erent rough surfaces, each observed with over 200 di erent combinations of viewing and illumination direction. The resulting BTF database is comprised of over 12,000 image textures. To enable convenient use of the BRDF measurements, we t the measurements to two recent models and obtain a BRDF parameter database. These parameters can be used directly in image analysis and synthesis of a wide variety of surfaces. The BTF, BRDF, and BRDF parameter databases have important implications for computer vision and computer graphics and and each is made publicly available.
Face Recognition: the Problem of Compensating for Changes in Illumination Direction
 IEEE Transactions on Pattern Analysis and Machine Intelligence
, 1997
"... A face recognition system must recognize a face from a novel image despite the variations between images of the same face. A common approach to overcoming image variations because of changes in the illumination conditions is to use image representations that are relatively insensitive to these varia ..."
Abstract

Cited by 269 (3 self)
 Add to MetaCart
A face recognition system must recognize a face from a novel image despite the variations between images of the same face. A common approach to overcoming image variations because of changes in the illumination conditions is to use image representations that are relatively insensitive to these variations. Examples of such representations are edge maps, image intensity derivatives, and images convolved with 2D Gaborlike filters. Here we present an empirical study that evaluates the sensitivity of these representations to changes in illumination, as well as viewpoint and facial expression. Our findings indicated that none of the representations considered is sufficient by itself to overcome image variations because of a change in the direction of illumination. Similar results were obtained for changes due to viewpoint and expression. Image representations that emphasized the horizontal features were found to be less sensitive to changes in the direction of illumination. However, systems...
Slow Feature Analysis: Unsupervised Learning of Invariances
"... Invariant features of temporally varying signals are useful for analysis and classification. Slow feature analysis (SFA) is a new method for learning invariant or slowly varying features from a vectorial input signal. It is based on a nonlinear expansion of the input signal and application of princi ..."
Abstract

Cited by 146 (9 self)
 Add to MetaCart
Invariant features of temporally varying signals are useful for analysis and classification. Slow feature analysis (SFA) is a new method for learning invariant or slowly varying features from a vectorial input signal. It is based on a nonlinear expansion of the input signal and application of principal component analysis to this expanded signal and its time derivative. It is guaranteed to find the optimal solution within a family of functions directly and can learn to extract a large number of decorrelated features, which are ordered by their degree of invariance. SFA can be applied hierarchically to process highdimensional input signals and extract complex features. SFA is applied first to complex cell tuning properties based on simple cell output, including disparity and motion. Then more complicated inputoutput functions are learned by repeated application of SFA. Finally, a hierarchical network of SFA modules is presented as a simple model of the visual system. The same unstructured network can learn translation, size, rotation, contrast, or, to a lesser degree, illumination invariance for onedimensional objects, depending on only the training stimulus. Surprisingly, only a few training objects suffice to achieve good generalization to new objects. The generated representation is suitable for object recognition. Performance degrades if the network is trained to learn multiple invariances simultaneously.
Algorithms for the Satisfiability (SAT) Problem: A Survey
 DIMACS Series in Discrete Mathematics and Theoretical Computer Science
, 1996
"... . The satisfiability (SAT) problem is a core problem in mathematical logic and computing theory. In practice, SAT is fundamental in solving many problems in automated reasoning, computeraided design, computeraided manufacturing, machine vision, database, robotics, integrated circuit design, compute ..."
Abstract

Cited by 127 (3 self)
 Add to MetaCart
. The satisfiability (SAT) problem is a core problem in mathematical logic and computing theory. In practice, SAT is fundamental in solving many problems in automated reasoning, computeraided design, computeraided manufacturing, machine vision, database, robotics, integrated circuit design, computer architecture design, and computer network design. Traditional methods treat SAT as a discrete, constrained decision problem. In recent years, many optimization methods, parallel algorithms, and practical techniques have been developed for solving SAT. In this survey, we present a general framework (an algorithm space) that integrates existing SAT algorithms into a unified perspective. We describe sequential and parallel SAT algorithms including variable splitting, resolution, local search, global optimization, mathematical programming, and practical SAT algorithms. We give performance evaluation of some existing SAT algorithms. Finally, we provide a set of practical applications of the sat...
HamiltonJacobi Skeletons
, 1999
"... The eikonal equation and variants of it are of significant interest for problems in computer vision and image processing. It is the basis for continuous versions of mathematical morphology, stereo, shapefromshading and for recent dynamic theories of shape. Its numerical simulation can be delicate, ..."
Abstract

Cited by 119 (12 self)
 Add to MetaCart
The eikonal equation and variants of it are of significant interest for problems in computer vision and image processing. It is the basis for continuous versions of mathematical morphology, stereo, shapefromshading and for recent dynamic theories of shape. Its numerical simulation can be delicate, owing to the formation of singularities in the evolving front and is typically based on level set methods. However, there are more classical approaches rooted in Hamiltonian physics which have yet to be widely used by the computer vision community. In this paper we review the Hamiltonian formulation, which offers specific advantages when it comes to the detection of singularities or shocks. We specialize to the case of Blum's grass fire flow and measure the average outward ux of the vector field that underlies the Hamiltonian system. This measure has very different limiting behaviors depending upon whether the region over which it is computed shrinks to a singular point or a nonsingular one. Hence, it is an effective way to distinguish between these two cases. We combine the ux measurement with a homotopy preserving thinning process applied in a discrete lattice. This leads to a robust and accurate algorithm for computing skeletons in 2D as well as 3D, which has low computational complexity. We illustrate the approach with several computational examples.
Height and gradient from shading
 International Journal of Computer Vision
, 1990
"... Abstract: The method described here for recovering the shape of a surface from a shaded image can deal with complex, wrinkled surfaces. Integrability can be enforced easily because both surface height and gradient are represented (A gradient field is integrable if it is the gradient of some surface ..."
Abstract

Cited by 107 (1 self)
 Add to MetaCart
Abstract: The method described here for recovering the shape of a surface from a shaded image can deal with complex, wrinkled surfaces. Integrability can be enforced easily because both surface height and gradient are represented (A gradient field is integrable if it is the gradient of some surface height function). The robustness of the method stems in part from linearization of the reflectance map about the current estimate of the surface orientation at each picture cell (The reflectance map gives the dependence of scene radiance on surface orientation). The new scheme can find an exact solution of a given shapefromshading problem even though a regularizing term is included. The reason is that the penalty term is needed only to stabilize the iterative scheme when it is far from the correct solution; it can be turned off as the solution is approached. This is a reflection of the fact that shapefromshading problems are not illposed when boundary conditions are available, or when the image contains singular points. This paper includes a review of previous work on shape from shading and photoclinometry. Novel features of the new scheme are introduced one at a time to make it easier to see what each contributes. Included is a discussion of implementation details that are important if exact algebraic solutions of synthetic shapefromshading problems are to be obtained. The hope is that better performance on synthetic data will lead to better performance on real data.
Generalization of the Lambertian Model and Implications for Machine Vision
, 1992
"... Lambert's model for diffuse reflection is extensively used in computational vision. It is used explicitly by methods such as shape from shading and photometric stereo, and implicitly by methods such as binocular stereo and motion detection. For several realworld objects, the Lambertian model can pro ..."
Abstract

Cited by 99 (12 self)
 Add to MetaCart
Lambert's model for diffuse reflection is extensively used in computational vision. It is used explicitly by methods such as shape from shading and photometric stereo, and implicitly by methods such as binocular stereo and motion detection. For several realworld objects, the Lambertian model can prove to be a very inaccurate approximation to the diffuse component. While the brightness of a Lambertian surface is independent of viewing direction, the brightness of a rough diffuse surface increases as the viewer approaches the source direction. A comprehensive model is developed that predicts reflectance from rough diffuse surfaces. The model accounts for complex geometric and radiometric phenomena such as masking, shadowing, and interreflections between points on the surface. Experiments have been conducted on real samples, such as, plaster, clay, sand, and cloth. All these surfaces demonstrate significant deviation from Lambertian behavior. The reflectance measurements obtained are in s...
Bayesian SuperResolved Surface Reconstruction from Images
"... Bayesian inference has been used successfully for many problems where the aim is to infer the parameters of a model of interest. In this paper we formulate the three dimensional reconstruction problem as the problem of inferring the parameters of a surface model from image data, and show how Bayesia ..."
Abstract

Cited by 97 (3 self)
 Add to MetaCart
Bayesian inference has been used successfully for many problems where the aim is to infer the parameters of a model of interest. In this paper we formulate the three dimensional reconstruction problem as the problem of inferring the parameters of a surface model from image data, and show how Bayesian methods can be used to estimate the parameters of this model given the image data. Thus we recover the three dimensional description of the scene. This approach also gives great flexibility. We can specify the geometrical properties of the model to suit our purpose, and can also use different models for how the surface reflects the light incident upon it. In common with other Bayesian inference problems, the estimation methodology requires that we can simulate the data that would have been recorded for any values of the model parameters. In this application this means that if we have image data we must be able to render the surface model. However it also means that we can infer the paramet...