Results 1 
3 of
3
Located Sets And Reverse Mathematics
 Journal of Symbolic Logic
, 1999
"... Let X be a compact metric space. A closed set K is located if the distance function d(x, K) exists as a continuous realvalued function on X ; weakly located if the predicate d(x, K) > r is # 1 allowing parameters. The purpose of this paper is to explore the concepts of located and weakly l ..."
Abstract

Cited by 15 (5 self)
 Add to MetaCart
Let X be a compact metric space. A closed set K is located if the distance function d(x, K) exists as a continuous realvalued function on X ; weakly located if the predicate d(x, K) > r is # 1 allowing parameters. The purpose of this paper is to explore the concepts of located and weakly located subsets of a compact separable metric space in the context of subsystems of second order arithmetic such as RCA 0 , WKL 0 and ACA 0 . We also give some applications of these concepts by discussing some versions of the Tietze extension theorem. In particular we prove an RCA 0 version of this result for weakly located closed sets.
The Baire category theorem in weak subsystems of secondorder arithmetic
 THE JOURNAL OF SYMBOLIC LOGIC
, 1993
"... ..."
Separation and weak König’s lemma
 Journal of Symbolic Logic
, 1999
"... investigating the strength of set existence axioms needed for separable Banach space theory. We show that the separation theorem foropenconvexsetsisequivalenttoWKL0 over RCA0. Weshow that the separation theorem for separably closed convex sets is equivalent to ACA0 over RCA0. Our strategy for provin ..."
Abstract

Cited by 6 (2 self)
 Add to MetaCart
investigating the strength of set existence axioms needed for separable Banach space theory. We show that the separation theorem foropenconvexsetsisequivalenttoWKL0 over RCA0. Weshow that the separation theorem for separably closed convex sets is equivalent to ACA0 over RCA0. Our strategy for proving these geometrical Hahn–Banach theorems is to reduce to the finitedimensional case by means of a compactness argument. 1.