Results 1  10
of
190
Monaural sound source separation by nonnegative matrix factorization with temporal continuity and sparseness criteria
 IEEE Trans. On Audio, Speech and Lang. Processing
, 2007
"... Abstract—An unsupervised learning algorithm for the separation of sound sources in onechannel music signals is presented. The algorithm is based on factorizing the magnitude spectrogram of an input signal into a sum of components, each of which has a fixed magnitude spectrum and a timevarying gain ..."
Abstract

Cited by 173 (29 self)
 Add to MetaCart
(Show Context)
Abstract—An unsupervised learning algorithm for the separation of sound sources in onechannel music signals is presented. The algorithm is based on factorizing the magnitude spectrogram of an input signal into a sum of components, each of which has a fixed magnitude spectrum and a timevarying gain. Each sound source, in turn, is modeled as a sum of one or more components. The parameters of the components are estimated by minimizing the reconstruction error between the input spectrogram and the model, while restricting the component spectrograms to be nonnegative and favoring components whose gains are slowly varying and sparse. Temporal continuity is favored by using a cost term which is the sum of squared differences between the gains in adjacent frames, and sparseness is favored by penalizing nonzero gains. The proposed iterative estimation algorithm is initialized with random values, and the gains and the spectra are then alternatively updated using multiplicative update rules until the values converge. Simulation experiments were carried out using generated mixtures of pitched musical instrument samples and drum sounds. The performance of the proposed method was compared with independent subspace analysis and basic nonnegative matrix factorization, which are based on the same linear model. According to these simulations, the proposed method enables a better separation quality than the previous algorithms. Especially, the temporal continuity criterion improved the detection of pitched musical sounds. The sparseness criterion did not produce significant improvements. Index Terms—Acoustic signal analysis, audio source separation, blind source separation, music, nonnegative matrix factorization, sparse coding, unsupervised learning. I.
Sparse deep belief net model for visual area V2
 Advances in Neural Information Processing Systems 20
, 2008
"... Abstract 1 Motivated in part by the hierarchical organization of the neocortex, a number of recently proposed algorithms have tried to learn hierarchical, or “deep, ” structure from unlabeled data. While several authors have formally or informally compared their algorithms to computations performed ..."
Abstract

Cited by 157 (19 self)
 Add to MetaCart
(Show Context)
Abstract 1 Motivated in part by the hierarchical organization of the neocortex, a number of recently proposed algorithms have tried to learn hierarchical, or “deep, ” structure from unlabeled data. While several authors have formally or informally compared their algorithms to computations performed in visual area V1 (and the cochlea), little attempt has been made thus far to evaluate these algorithms in terms of their fidelity for mimicking computations at deeper levels in the cortical hierarchy. This thesis describes an unsupervised learning model that faithfully mimics certain properties of visual area V2. Specifically, we develop a sparse variant of the deep belief networks described by Hinton et al. (2006). We learn two layers of representation in the network, and demonstrate that the first layer, similar to prior work on sparse coding and ICA, results in localized, oriented, edge filters, similar to the gabor functions known to model simple cell receptive fields in area V1. Further, the second layer in our model encodes various combinations of the first layer responses in the data. Specifically, it picks up both collinear (“contour”) features as well as corners and junctions. More interestingly, in a quantitative comparison, the encoding of these more complex “corner ” features matches well with the results from Ito & Komatsu’s study of neural responses to angular stimuli in area V2 of the macaque. This suggests that our sparse variant of deep belief networks holds promise for modeling more higherorder features that are encoded in visual cortex. Conversely, one may also interpret the results reported here as suggestive that visual area V2 is performing computations on its input similar to those performed in (sparse) deep belief networks. This plausible relationship generates some intriguing hypotheses about V2 computations. 1 This thesis is an extended version of an earlier paper by Honglak Lee, Chaitanya Ekanadham, and Andrew Ng titled “Sparse deep belief net model for visual area V2.” 1
Representation Learning: A Review and New Perspectives
, 2012
"... The success of machine learning algorithms generally depends on data representation, and we hypothesize that this is because different representations can entangle and hide more or less the different explanatory factors of variation behind the data. Although specific domain knowledge can be used to ..."
Abstract

Cited by 137 (3 self)
 Add to MetaCart
The success of machine learning algorithms generally depends on data representation, and we hypothesize that this is because different representations can entangle and hide more or less the different explanatory factors of variation behind the data. Although specific domain knowledge can be used to help design representations, learning with generic priors can also be used, and the quest for AI is motivating the design of more powerful representationlearning algorithms implementing such priors. This paper reviews recent work in the area of unsupervised feature learning and joint training of deep learning, covering advances in probabilistic models, autoencoders, manifold learning, and deep architectures. This motivates longerterm unanswered questions about the appropriate objectives for learning good representations, for computing representations (i.e., inference), and the geometrical connections between representation learning, density estimation and manifold learning.
Learning Invariant Features through Topographic Filter Maps
"... Several recentlyproposed architectures for highperformance object recognition are composed of two main stages: a feature extraction stage that extracts locallyinvariant feature vectors from regularly spaced image patches, and a somewhat generic supervised classifier. The first stage is often compos ..."
Abstract

Cited by 114 (20 self)
 Add to MetaCart
(Show Context)
Several recentlyproposed architectures for highperformance object recognition are composed of two main stages: a feature extraction stage that extracts locallyinvariant feature vectors from regularly spaced image patches, and a somewhat generic supervised classifier. The first stage is often composed of three main modules: (1) a bank of filters (often oriented edge detectors); (2) a nonlinear transform, such as a pointwise squashing functions, quantization, or normalization; (3) a spatial pooling operation which combines the outputs of similar filters over neighboring regions. We propose a method that automatically learns such feature extractors in an unsupervised fashion by simultaneously learning the filters and the pooling units that combine multiple filter outputs together. The method automatically generates topographic maps of similar filters that extract features of orientations, scales, and positions. These similar filters are pooled together, producing locallyinvariant outputs. The learned feature descriptors give comparable results as SIFT on image recognition tasks for which SIFT is well suited, and better results than SIFT on tasks for which SIFT is less well suited. 1.
A Fast FixedPoint Algorithm for Independent Component Analysis of Complex Valued Signals
, 2000
"... Separation of complex valued signals is a frequently arising problem in signal processing. For example, separation of convolutively mixed source signals involves computations on complex valued signals. In this article it is assumed that the original, complex valued source signals are mutually statis ..."
Abstract

Cited by 112 (1 self)
 Add to MetaCart
Separation of complex valued signals is a frequently arising problem in signal processing. For example, separation of convolutively mixed source signals involves computations on complex valued signals. In this article it is assumed that the original, complex valued source signals are mutually statistically independent, and the problem is solved by the independent component analysis (ICA) model. ICA is a statistical method for transforming an observed multidimensional random vector into components that are mutually as independent as possible. In this article, a fast xedpoint type algorithm that is capable of separating complex valued, linearly mixed source signals is presented and its computational efficiency is shown by simulations. Also, the local consistency of the estimator given by the algorithm is proved.
A TwoLayer Sparse Coding Model Learns Simple and Complex Cell Receptive Fields and Topography From Natural Images
 VISION RESEARCH
, 2001
"... The classical receptive fields of simple cells in the visual cortex have been shown to emerge from the statistical properties of natural images by forcing the cell responses to be maximally sparse, i.e. significantly activated only rarely. Here, we show that this single principle of sparseness can ..."
Abstract

Cited by 93 (18 self)
 Add to MetaCart
The classical receptive fields of simple cells in the visual cortex have been shown to emerge from the statistical properties of natural images by forcing the cell responses to be maximally sparse, i.e. significantly activated only rarely. Here, we show that this single principle of sparseness can also lead to emergence of topography (columnar organization) and complex cell properties as well. These are obtained by maximizing the sparsenesses of locally pooled energies, which correspond to complex cell outputs. Thus we obtain a highly parsimonious model of how these properties of the visual cortex are adapted to the characteristics of the natural input.
Document clustering using nonnegative matrix factorization
 Information Processing & Management
"... ..."
(Show Context)
Learning Optimized Features for Hierarchical Models of Invariant Object Recognition
, 2002
"... There is an ongoing debate over the capabilities of hierarchical neural feedforward architectures for performing realworld invariant object recognition. Although a variety of hierarchical models exists, appropriate supervised and unsupervised learning methods are still an issue of intense rese ..."
Abstract

Cited by 90 (28 self)
 Add to MetaCart
(Show Context)
There is an ongoing debate over the capabilities of hierarchical neural feedforward architectures for performing realworld invariant object recognition. Although a variety of hierarchical models exists, appropriate supervised and unsupervised learning methods are still an issue of intense research. We propose a feedforward model for recognition that shares components like weightsharing, pooling stages, and competitive nonlinearities with earlier approaches, but focus on new methods for learning optimal featuredetecting cells in intermediate stages of the hierarchical network.