Results 1 
6 of
6
Sparse matrices in Matlab: Design and implementation
, 1991
"... We have extended the matrix computation language and environment Matlab to include sparse matrix storage and operations. The only change to the outward appearance of the Matlab language is a pair of commands to create full or sparse matrices. Nearly all the operations of Matlab now apply equally to ..."
Abstract

Cited by 131 (20 self)
 Add to MetaCart
We have extended the matrix computation language and environment Matlab to include sparse matrix storage and operations. The only change to the outward appearance of the Matlab language is a pair of commands to create full or sparse matrices. Nearly all the operations of Matlab now apply equally to full or sparse matrices, without any explicit action by the user. The sparse data structure represents a matrix in space proportional to the number of nonzero entries, and most of the operations compute sparse results in time proportionaltothenumber of arithmetic operations on nonzeros.
Locality Of Reference In Lu Decomposition With Partial Pivoting
 SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS
, 1997
"... This paper presents a new partitioned algorithm for LU decomposition with partial pivoting. The new algorithm, called the recursively partitioned algorithm, is based on a recursive partitioning of the matrix. The paper analyzes the locality of reference in the new algorithm and the locality of refer ..."
Abstract

Cited by 96 (10 self)
 Add to MetaCart
This paper presents a new partitioned algorithm for LU decomposition with partial pivoting. The new algorithm, called the recursively partitioned algorithm, is based on a recursive partitioning of the matrix. The paper analyzes the locality of reference in the new algorithm and the locality of reference in a known and widely used partitioned algorithm for LU decomposition called the rightlooking algorithm. The analysis reveals that the new algorithm performs a factor of $\Theta(\sqrt{M/n})$ fewer I/O operations (or cache misses) than the rightlooking algorithm, where $n$ is the order of the matrix and $M$ is the size of primary memory. The analysis also determines the optimal block size for the rightlooking algorithm. Experimental comparisons between the new algorithm and the rightlooking algorithm show that an implementation of the new algorithm outperforms a similarly coded rightlooking algorithm on six different RISC architectures, that the new algorithm performs fewer cache misses than any other algorithm tested, and that it benefits more from Strassen's matrixmultiplication algorithm.
A Survey of OutofCore Algorithms in Numerical Linear Algebra
 DIMACS SERIES IN DISCRETE MATHEMATICS AND THEORETICAL COMPUTER SCIENCE
, 1999
"... This paper surveys algorithms that efficiently solve linear equations or compute eigenvalues even when the matrices involved are too large to fit in the main memory of the computer and must be stored on disks. The paper focuses on scheduling techniques that result in mostly sequential data acces ..."
Abstract

Cited by 59 (3 self)
 Add to MetaCart
This paper surveys algorithms that efficiently solve linear equations or compute eigenvalues even when the matrices involved are too large to fit in the main memory of the computer and must be stored on disks. The paper focuses on scheduling techniques that result in mostly sequential data accesses and in data reuse, and on techniques for transforming algorithms that cannot be effectively scheduled. The survey covers outofcore algorithms for solving dense systems of linear equations, for the direct and iterative solution of sparse systems, for computing eigenvalues, for fast Fourier transforms, and for Nbody computations. The paper also discusses reasonable assumptions on memory size, approaches for the analysis of outofcore algorithms, and relationships between outofcore, cacheaware, and parallel algorithms.
CODASYL database management systems
 ACM Computing Surveys
, 1976
"... This paper presents in tutorial fashion the concepts, notation, aud database languages that were defined by the CODASYL Data Description Language and Programming Language Committees. Data structure diagram notation is explained, and sample database definition is developed along with several sampl ..."
Abstract

Cited by 17 (0 self)
 Add to MetaCart
This paper presents in tutorial fashion the concepts, notation, aud database languages that were defined by the CODASYL Data Description Language and Programming Language Committees. Data structure diagram notation is explained, and sample database definition is developed along with several sample programs. " Advanced features of the languages are discussed, together with examples of their use. An extensive bibliography is included.
Quantitative Performance Modeling of Scientific Computations and Creating Locality in Numerical Algorithms
, 1995
"... you design an efficient outofcore iterative algorithm? These are the two questions answered in this thesis. ..."
Abstract
 Add to MetaCart
you design an efficient outofcore iterative algorithm? These are the two questions answered in this thesis.
Looking Back at Dense Linear Algebra Software
, 2011
"... Over the years, computational physics and chemistry served as an ongoing source of problems that demanded the ever increasing performance from hardware as well as the software that ran on top of it. Most of these problems could be translated into solutions for systems of linear equations: the very t ..."
Abstract
 Add to MetaCart
Over the years, computational physics and chemistry served as an ongoing source of problems that demanded the ever increasing performance from hardware as well as the software that ran on top of it. Most of these problems could be translated into solutions for systems of linear equations: the very topic of numerical linear algebra. Seemingly then, a set of efficient linear solvers could be solving important scientific problems for years to come. We argue that dramatic changes in hardware designs precipitated by the shifting nature of the marketplace of computer hardware had a continuous effect on the software for numerical linear algebra. The extraction of high percentages of peak performance continues to require adaptation of software. If the past history of this adaptive nature of linear algebra software is any guide then the future theme will feature changes as well – changes aimed at harnessing the incredible advances of the evolving hardware infrastructure. 1.1