Results 1  10
of
121
Complexity and Expressive Power of Logic Programming
, 1997
"... This paper surveys various complexity results on different forms of logic programming. The main focus is on decidable forms of logic programming, in particular, propositional logic programming and datalog, but we also mention general logic programming with function symbols. Next to classical results ..."
Abstract

Cited by 287 (57 self)
 Add to MetaCart
This paper surveys various complexity results on different forms of logic programming. The main focus is on decidable forms of logic programming, in particular, propositional logic programming and datalog, but we also mention general logic programming with function symbols. Next to classical results on plain logic programming (pure Horn clause programs), more recent results on various important extensions of logic programming are surveyed. These include logic programming with different forms of negation, disjunctive logic programming, logic programming with equality, and constraint logic programming. The complexity of the unification problem is also addressed.
Index Structures for Path Expressions
, 1997
"... In recent years there has been an increased interest in managing data which does not conform to traditional data models, like the relational or object oriented model. The reasons for this nonconformance are diverse. One one hand, data may not conform to such models at the physical level: it may be ..."
Abstract

Cited by 285 (8 self)
 Add to MetaCart
In recent years there has been an increased interest in managing data which does not conform to traditional data models, like the relational or object oriented model. The reasons for this nonconformance are diverse. One one hand, data may not conform to such models at the physical level: it may be stored in data exchange formats, fetched from the Internet, or stored as structured les. One the other hand, it may not conform at the logical level: data may have missing attributes, some attributes may be of di erent types in di erent data items, there may be heterogeneous collections, or the data may be simply specified by a schema which is too complex or changes too often to be described easily as a traditional schema. The term semistructured data has been used to refer to such data. The data model proposed for this kind of data consists of an edgelabeled graph, in which nodes correspond to objects and edges to attributes or values. Figure 1 illustrates a semistructured database providing information about a city. Relational databases are traditionally queried with associative queries, retrieving tuples based on the value of some attributes. To answer such queries efciently, database management systems support indexes for translating attribute values into tuple ids (e.g. Btrees or hash tables). In objectoriented databases, path queries replace the simpler associative queries. Several data structures have been proposed for answering path queries e ciently: e.g., access support relations 14] and path indexes 4]. In the case of semistructured data, queries are even more complex, because they may contain generalized path expressions 1, 7, 8, 16]. The additional exibility is needed in order to traverse data whose structure is irregular, or partially unknown to the user.
Formal Models Of Web Queries
 In Proc. of ACM PODS
, 1997
"... We present a new formal model of query and computation on the Web. We focus on two important aspects that distinguish the access to Web data from the access to a standard database system: the navigational nature of the access and the lack of concurrency control. We show that these two issues have si ..."
Abstract

Cited by 78 (3 self)
 Add to MetaCart
We present a new formal model of query and computation on the Web. We focus on two important aspects that distinguish the access to Web data from the access to a standard database system: the navigational nature of the access and the lack of concurrency control. We show that these two issues have significant effects on the computability of queries. To illustrate the ideas and how they can be used in practice for designing appropriate Web query languages, we consider a particular query language, the Web calculus, an abstraction and extension of the practical Web query language WebSQL. c fl1998 Elsevier Science Ltd. All rights reserved Key words: World Wide Web, Web Queries, Query Languages, Computability, Formal Models 1. INTRODUCTION Tools and techniques for retrieving information from the World Wide Web are rapidly being developed [9, 10, 13, 4, 12, 8]. Most of these works are based on the metaphor of the Web as a database, in order to carry over and adapt familiar query languages s...
Towards Tractable Algebras for Bags
, 1993
"... Bags, i.e. sets with duplicates, are often used to implement relations in database systems. In this paper, we study the expressive power of algebras for manipulating bags. The algebra we present is a simple extension of the nested relation algebra. Our aim is to investigate how the use of bags in ..."
Abstract

Cited by 58 (4 self)
 Add to MetaCart
Bags, i.e. sets with duplicates, are often used to implement relations in database systems. In this paper, we study the expressive power of algebras for manipulating bags. The algebra we present is a simple extension of the nested relation algebra. Our aim is to investigate how the use of bags in the language extends its expressive power, and increases its complexity. We consider two main issues, namely (i) the impact of the depth of bag nesting on the expressive power, and (ii) the complexity and the expressive power induced by the algebraic operations. We show that the bag algebra is more expressive than the nested relation algebra (at all levels of nesting), and that the difference may be subtle. We establish a hierarchy based on the structure of algebra expressions. This hierarchy is shown to be highly related to the properties of the powerset operator. Invited to a special issue of the Journal of Computer and System Sciences selected from ACM Princ. of Database Systems,...
Infinitary Logic and Inductive Definability over Finite Structures
 Information and Computation
, 1995
"... The extensions of firstorder logic with a least fixed point operator (FO + LFP) and with a partial fixed point operator (FO + PFP) are known to capture the complexity classes P and PSPACE respectively in the presence of an ordering relation over finite structures. Recently, Abiteboul and Vianu [Abi ..."
Abstract

Cited by 56 (6 self)
 Add to MetaCart
The extensions of firstorder logic with a least fixed point operator (FO + LFP) and with a partial fixed point operator (FO + PFP) are known to capture the complexity classes P and PSPACE respectively in the presence of an ordering relation over finite structures. Recently, Abiteboul and Vianu [Abiteboul and Vianu, 1991b] investigated the relationship of these two logics in the absence of an ordering, using a machine model of generic computation. In particular, they showed that the two languages have equivalent expressive power if and only if P = PSPACE. These languages can also be seen as fragments of an infinitary logic where each formula has a bounded number of variables, L ! 1! (see, for instance, [Kolaitis and Vardi, 1990]). We investigate this logic of finite structures and provide a normal form for it. We also present a treatment of the results in [Abiteboul and Vianu, 1991b] from this point of view. In particular, we show that we can write a formula of FO + LFP that defines ...
Computing With FirstOrder Logic
, 1995
"... We study two important extensions of firstorder logic (FO) with iteration, the fixpoint and while queries. The main result of the paper concerns the open problem of the relationship between fixpoint and while: they are the same iff ptime = pspace. These and other expressibility results are obtaine ..."
Abstract

Cited by 52 (13 self)
 Add to MetaCart
We study two important extensions of firstorder logic (FO) with iteration, the fixpoint and while queries. The main result of the paper concerns the open problem of the relationship between fixpoint and while: they are the same iff ptime = pspace. These and other expressibility results are obtained using a powerful normal form for while which shows that each while computation over an unordered domain can be reduced to a while computation over an ordered domain via a fixpoint query. The fixpoint query computes an equivalence relation on tuples which is a congruence with respect to the rest of the computation. The same technique is used to show that equivalence of tuples and structures with respect to FO formulas with bounded number of variables is definable in fixpoint. Generalizing fixpoint and while, we consider more powerful languages which model arbitrary computation interacting with a database using a finite set of FO queries. Such computation is modeled by a relational machine...
Infinitary Logics and 01 Laws
 Information and Computation
, 1992
"... We investigate the in nitary logic L 1! , in which sentences may have arbitrary disjunctions and conjunctions, but they involve only a nite number of distinct variables. We show that various xpoint logics can be viewed as fragments of L 1! , and we describe a gametheoretic characterizat ..."
Abstract

Cited by 42 (4 self)
 Add to MetaCart
We investigate the in nitary logic L 1! , in which sentences may have arbitrary disjunctions and conjunctions, but they involve only a nite number of distinct variables. We show that various xpoint logics can be viewed as fragments of L 1! , and we describe a gametheoretic characterization of the expressive power of the logic. Finally, we study asymptotic probabilities of properties 1! on nite structures. We show that the 01 law holds for L 1! , i.e., the asymptotic probability of every sentence in this logic exists and is equal to either 0 or 1. This result subsumes earlier work on asymptotic probabilities for various xpoint logics and reveals the boundary of 01 laws for in nitary logics.
Fixpoint Logics, Relational Machines, and Computational Complexity
 In Structure and Complexity
, 1993
"... We establish a general connection between fixpoint logic and complexity. On one side, we have fixpoint logic, parameterized by the choices of 1storder operators (inflationary or noninflationary) and iteration constructs (deterministic, nondeterministic, or alternating). On the other side, we have t ..."
Abstract

Cited by 37 (5 self)
 Add to MetaCart
We establish a general connection between fixpoint logic and complexity. On one side, we have fixpoint logic, parameterized by the choices of 1storder operators (inflationary or noninflationary) and iteration constructs (deterministic, nondeterministic, or alternating). On the other side, we have the complexity classes between P and EXPTIME. Our parameterized fixpoint logics capture the complexity classes P, NP, PSPACE, and EXPTIME, but equality is achieved only over ordered structures. There is, however, an inherent mismatch between complexity and logic  while computational devices work on encodings of problems, logic is applied directly to the underlying mathematical structures. To overcome this mismatch, we develop a theory of relational complexity, which bridges tha gap between standard complexity and fixpoint logic. On one hand, we show that questions about containments among standard complexity classes can be translated to questions about containments among relational complex...
Feasible Computation through Model Theory
, 1993
"... The computational complexity of a problem is usually defined in terms of the resources required on some machine model of computation. An alternative view looks at the complexity of describing the problem (seen as a collection of relational structures) in a logic, measuring logical resources such as ..."
Abstract

Cited by 35 (7 self)
 Add to MetaCart
The computational complexity of a problem is usually defined in terms of the resources required on some machine model of computation. An alternative view looks at the complexity of describing the problem (seen as a collection of relational structures) in a logic, measuring logical resources such as the number of variables, quantifiers, operators, etc. A close correspondence has been observed between these two, with many natural logics corresponding exactly to independently defined complexity classes. For the complexity classes that are generally identified with feasible computation, such characterizations require the presence of a linear order on the domain of every structure, in which case the class PTIME is characterized by an extension of firstorder logic by means of an inductive operator. No logical characterization of feasible computation is known for unordered structures. We approach this question from two directions. On the one hand, we seek to accurately characterize the expre...