Results 1  10
of
44
On LinearTime Deterministic Algorithms for Optimization Problems in Fixed Dimension
, 1992
"... We show that with recently developed derandomization techniques, one can convert Clarkson's randomized algorithm for linear programming in fixed dimension into a lineartime deterministic one. The constant of proportionality is d O(d) , which is better than for previously known such algorithms. We s ..."
Abstract

Cited by 94 (11 self)
 Add to MetaCart
We show that with recently developed derandomization techniques, one can convert Clarkson's randomized algorithm for linear programming in fixed dimension into a lineartime deterministic one. The constant of proportionality is d O(d) , which is better than for previously known such algorithms. We show that the algorithm works in a fairly general abstract setting, which allows us to solve various other problems (such as finding the maximum volume ellipsoid inscribed into the intersection of n halfspaces) in linear time.
Applications of parametric searching in geometric optimization
 J. Algorithms
, 1994
"... z Sivan Toledo x ..."
On Range Searching with Semialgebraic Sets
 DISCRETE COMPUT. GEOM
, 1994
"... Let P be a set of n points in R d (where d is a small fixed positive integer), and let \Gamma be a collection of subsets of R d , each of which is defined by a constant number of bounded degree polynomials. We consider the following \Gammarange searching problem: Given P , build a data structur ..."
Abstract

Cited by 80 (22 self)
 Add to MetaCart
Let P be a set of n points in R d (where d is a small fixed positive integer), and let \Gamma be a collection of subsets of R d , each of which is defined by a constant number of bounded degree polynomials. We consider the following \Gammarange searching problem: Given P , build a data structure for efficient answering of queries of the form `Given a fl 2 \Gamma, count (or report) the points of P lying in fl'. Generalizing the simplex range searching techniques, we give a solution with nearly linear space and preprocessing time and with O(n 1\Gamma1=b+ffi ) query time, where d b 2d \Gamma 3 and ffi ? 0 is an arbitrarily small constant. The actual value of b is related to the problem of partitioning arrangements of algebraic surfaces into constantcomplexity cells. We present some of the applications of \Gammarange searching problem, including improved ray shooting among triangles in R³.
Approximating center points with iterated Radon points
 Internat. J. Comput. Geom. Appl
, 1996
"... We give a practical and provably good Monte Carlo algorithm for approximating center points. Let P be a set of n points in IR d. A point c ∈ IR d is a βcenter point of P if every closed halfspace containing c contains at least βn points of P. Every point set has a 1/(d + 1)center point; our algori ..."
Abstract

Cited by 55 (10 self)
 Add to MetaCart
We give a practical and provably good Monte Carlo algorithm for approximating center points. Let P be a set of n points in IR d. A point c ∈ IR d is a βcenter point of P if every closed halfspace containing c contains at least βn points of P. Every point set has a 1/(d + 1)center point; our algorithm finds an Ω(1/d 2)center point with high probability. Our algorithm has a small constant factor and is the first approximate center point algorithm whose complexity is subexponential in d. Moreover, it can be optimally parallelized to require O(log 2 d log log n) time. Our algorithm has been used in mesh partitioning methods and can be used in the construction of high breakdown estimators for multivariate datasets in statistics. It has the potential to improve results in practice for constructing weak ɛnets. We derive a variant of our algorithm whose time bound is fully polynomial in d and linear in n, and show how to combine our approach with previous techniques to compute high quality center points more quickly. 1
Vertical decomposition of shallow levels in 3dimensional arrangements and its applications
 SIAM J. Comput
"... Let F be a collection of n bivariate algebraic functions of constant maximum degree. We show that the combinatorial complexity of the vertical decomposition of the ≤klevel of the arrangement A(F) is O(k 3+ε ψ(n/k)), for any ε> 0, where ψ(r) is the maximum complexity of the lower envelope of a subse ..."
Abstract

Cited by 54 (13 self)
 Add to MetaCart
Let F be a collection of n bivariate algebraic functions of constant maximum degree. We show that the combinatorial complexity of the vertical decomposition of the ≤klevel of the arrangement A(F) is O(k 3+ε ψ(n/k)), for any ε> 0, where ψ(r) is the maximum complexity of the lower envelope of a subset of at most r functions of F. This bound is nearly optimal in the worst case, and implies the existence of shallow cuttings, in the sense of [52], of small size in arrangements of bivariate algebraic functions. We also present numerous applications of these results, including: (i) data structures for several generalized threedimensional rangesearching problems; (ii) dynamic data structures for planar nearest and farthestneighbor searching under various fairly general distance functions; (iii) an improved (nearquadratic) algorithm for minimumweight bipartite Euclidean matching in the plane; and (iv) efficient algorithms for certain geometric optimization problems in static and dynamic settings.
Product Range Spaces, Sensitive Sampling, and Derandomization
, 1993
"... We introduce the concept of a sensitive Eapproximation, and use it to derive a more efficient algorithm for computing &nets. We define and investigate product range spaces, for which we establish sampling theorems analogous to the standard finite VCdimensional case. This generalizes and simpli ..."
Abstract

Cited by 46 (6 self)
 Add to MetaCart
We introduce the concept of a sensitive Eapproximation, and use it to derive a more efficient algorithm for computing &nets. We define and investigate product range spaces, for which we establish sampling theorems analogous to the standard finite VCdimensional case. This generalizes and simplifies results from previous works. We derive a simpler optimal deterministic convex hull algorithm, and by extending the method to the intersection of a set of balls with the same radius, we obtain an O(n log3 n) deterministic algorithm for computing the diameter of an npoint set in 3dimensional space.
Geometric Range Searching
, 1994
"... In geometric range searching, algorithmic problems of the following type are considered: Given an npoint set P in the plane, build a data structure so that, given a query triangle R, the number of points of P lying in R can be determined quickly. Problems of this type are of crucial importance in c ..."
Abstract

Cited by 46 (2 self)
 Add to MetaCart
In geometric range searching, algorithmic problems of the following type are considered: Given an npoint set P in the plane, build a data structure so that, given a query triangle R, the number of points of P lying in R can be determined quickly. Problems of this type are of crucial importance in computational geometry, as they can be used as subroutines in many seemingly unrelated algorithms. We present a survey of results and main techniques in this area.
An ExpanderBased Approach to Geometric Optimization
 IN PROC. 9TH ANNU. ACM SYMPOS. COMPUT. GEOM
, 1993
"... We present a new approach to problems in geometric optimization that are traditionally solved using the parametric searching technique of Megiddo [34]. Our new approach ..."
Abstract

Cited by 40 (16 self)
 Add to MetaCart
We present a new approach to problems in geometric optimization that are traditionally solved using the parametric searching technique of Megiddo [34]. Our new approach
Primal Dividing and Dual Pruning: OutputSensitive Construction of 4d Polytopes and 3d Voronoi Diagrams
, 1997
"... In this paper, we give an algorithm for outputsensitive construction of an fface convex hull of a set of n points in general position in E 4 . Our algorithm runs in O((n + f)log 2 f) time and uses O(n + f) space. This is the first algorithm within a polylogarithmic factor of optimal O(n log f ..."
Abstract

Cited by 31 (3 self)
 Add to MetaCart
In this paper, we give an algorithm for outputsensitive construction of an fface convex hull of a set of n points in general position in E 4 . Our algorithm runs in O((n + f)log 2 f) time and uses O(n + f) space. This is the first algorithm within a polylogarithmic factor of optimal O(n log f + f) time over the whole range of f . By a standard lifting map, we obtain outputsensitive algorithms for the Voronoi diagram or Delaunay triangulation in E 3 and for the portion of a Voronoi diagram that is clipped to a convex polytope. Our approach simplifies the "ultimate convex hull algorithm" of Kirkpatrick and Seidel in E 2 and also leads to improved outputsensitive results on constructing convex hulls in E d for any even constant d ? 4. 1 Introduction Geometric structures induced by n points in Euclidean ddimensional space, such as the convex hull, Voronoi diagram, or Delaunay triangulation, can be of larger size than the point set that defines them. In many practical situat...