Results 1 
8 of
8
Deliverables: A Categorical Approach to Program Development in Type Theory
, 1992
"... This thesis considers the problem of program correctness within a rich theory of dependent types, the Extended Calculus of Constructions (ECC). This system contains a powerful programming language of higherorder primitive recursion and higherorder intuitionistic logic. It is supported by Pollack&a ..."
Abstract

Cited by 25 (1 self)
 Add to MetaCart
This thesis considers the problem of program correctness within a rich theory of dependent types, the Extended Calculus of Constructions (ECC). This system contains a powerful programming language of higherorder primitive recursion and higherorder intuitionistic logic. It is supported by Pollack's versatile LEGO implementation, which I use extensively to develop the mathematical constructions studied here. I systematically investigate Burstall's notion of deliverable, that is, a program paired with a proof of correctness. This approach separates the concerns of programming and logic, since I want a simple program extraction mechanism. The \Sigmatypes of the calculus enable us to achieve this. There are many similarities with the subset interpretation of MartinLof type theory. I show that deliverables have a rich categorical structure, so that correctness proofs may be decomposed in a principled way. The categorical combinators which I define in the system package up much logical bo...
Sequent Combinators: A Hilbert System for the Lambda Calculus
 MATHEMATICAL STRUCTURES IN COMPUTER SCIENCE
, 1999
"... This paper introduces a Hilbert system for lambda calculus called sequent combinators. Sequent combinators address many of the problems of Hilbert systems, which have led to the more widespread adoption of natural deduction systems in computer science. This suggests that Hilbert systems, with the ..."
Abstract

Cited by 5 (4 self)
 Add to MetaCart
This paper introduces a Hilbert system for lambda calculus called sequent combinators. Sequent combinators address many of the problems of Hilbert systems, which have led to the more widespread adoption of natural deduction systems in computer science. This suggests that Hilbert systems, with their more uniform approach to metavariables and substitution, may be a more suitable framework than lambda calculus for type theories and programming languages.
Interactive programs and weakly final coalgebras (extended version
 Dependently typed programming, number 04381 in Dagstuhl Seminar Proceedings, 2004. Available via http://drops.dagstuhl.de/opus
"... GR/S30450/01. 2 A. Setzer, P. Hancock 1 Introduction According to MartinL"of [19]: "... I do not think that the search for logically ever more satisfactory high level programming languages can stop short of anything but ..."
Abstract

Cited by 5 (3 self)
 Add to MetaCart
GR/S30450/01. 2 A. Setzer, P. Hancock 1 Introduction According to MartinL&quot;of [19]: &quot;... I do not think that the search for logically ever more satisfactory high level programming languages can stop short of anything but
Recursive Models of General Inductive Types
 Fundam. Inf
, 1993
"... We give an interpretation of MartinLof's type theory (with universes) extended with generalized inductive types. The model is an extension of the recursive model given by Beeson. By restricting our attention to PER model, we show that the strictness of positivity condition in the definition of ..."
Abstract

Cited by 2 (1 self)
 Add to MetaCart
We give an interpretation of MartinLof's type theory (with universes) extended with generalized inductive types. The model is an extension of the recursive model given by Beeson. By restricting our attention to PER model, we show that the strictness of positivity condition in the definition of generalized inductive types can be dropped. It therefore gives an interpretation of general inductive types in MartinLof's type theory. Copyright c fl1993. All rights reserved. Reproduction of all or part of this work is permitted for educational or research purposes on condition that (1) this copyright notice is included, (2) proper attribution to the author or authors is made and (3) no commercial gain is involved. Technical Reports issued by the Department of Computer Science, Manchester University, are available by anonymous ftp from m1.cs.man.ac.uk (130.88.13.4) in the directory /pub/TR. The files are stored as PostScript, in compressed form, with the report number as filename. Alternative...
Understanding Inductive Types in Constructions
, 1993
"... In this paper we extend the Calculus of Constructions with generalized inductive types. The extension is justified by showing that the usual set theoretical model can be effectivized. It is also pointed out that the model given in a published paper for a collection of inductive types in a different ..."
Abstract

Cited by 2 (1 self)
 Add to MetaCart
(Show Context)
In this paper we extend the Calculus of Constructions with generalized inductive types. The extension is justified by showing that the usual set theoretical model can be effectivized. It is also pointed out that the model given in a published paper for a collection of inductive types in a different style is wrong.
Encodings In Polymorphism, revisited
, 1992
"... We consider encodings in polymorphism with finite product types. These encodings are given in terms of Ialgebras. They have the property that all canonical terms (ground terms) are normal terms. We transplant the proof of a wellknown result to our setting and show why weak recursion is admissible. ..."
Abstract

Cited by 1 (1 self)
 Add to MetaCart
(Show Context)
We consider encodings in polymorphism with finite product types. These encodings are given in terms of Ialgebras. They have the property that all canonical terms (ground terms) are normal terms. We transplant the proof of a wellknown result to our setting and show why weak recursion is admissible. We also show how to carry out the dual encodings using the existential quantifier. Copyright c fl1993. All rights reserved. Reproduction of all or part of this work is permitted for educational or research purposes on condition that (1) this copyright notice is included, (2) proper attribution to the author or authors is made and (3) no commercial gain is involved. Technical Reports issued by the Department of Computer Science, Manchester University, are available by anonymous ftp from m1.cs.man.ac.uk (130.88.13.4) in the directory /pub/TR. The files are stored as PostScript, in compressed form, with the report number as filename. Alternatively, reports are available by post from The Comput...
Dependently Typed Programming
"... Abstract. We reconsider the representation of interactive programs in dependent type theory that the authors proposed in earlier papers. Whereas in previous versions the type of interactive programs was introduced in an ad hoc way, it is here defined as a weakly final coalgebra for a general form of ..."
Abstract
 Add to MetaCart
Abstract. We reconsider the representation of interactive programs in dependent type theory that the authors proposed in earlier papers. Whereas in previous versions the type of interactive programs was introduced in an ad hoc way, it is here defined as a weakly final coalgebra for a general form of polynomial functor. The are two versions: in the first the interface with the real world is fixed, while in the second the potential interactions can depend on the history of previous interactions. The second version may be appropriate for working with specifications of interactive programs. We focus on commandresponse interfaces, and consider both client and server programs, that run on opposite sides such an interface. We give formation/introduction/elimination/equality rules for these coalgebras. These are explored in two dimensions: coiterative versus corecursive, and monadic versus nonmonadic. We also comment upon the relationship of the corresponding rules with guarded induction. It turns out that the introduction rules are nothing but a slightly restricted form of guarded induction. However, the form in which we write guarded induction is not recursive equations (which would break normalisation – we show that type checking becomes undecidable), but instead involves an elimination operator in a crucial way.