Results 1  10
of
10
Beyond The Universal Turing Machine
, 1998
"... We describe an emerging field, that of nonclassical computability and nonclassical computing machinery. According to the nonclassicist, the set of welldefined computations is not exhausted by the computations that can be carried out by a Turing machine. We provide an overview of the field and a phi ..."
Abstract

Cited by 31 (1 self)
 Add to MetaCart
We describe an emerging field, that of nonclassical computability and nonclassical computing machinery. According to the nonclassicist, the set of welldefined computations is not exhausted by the computations that can be carried out by a Turing machine. We provide an overview of the field and a philosophical defence of its foundations.
The Broad Conception Of Computation
 American Behavioral Scientist
, 1997
"... A myth has arisen concerning Turing's paper of 1936, namely that Turing set forth a fundamental principle concerning the limits of what can be computed by machine  a myth that has passed into cognitive science and the philosophy of mind, to wide and pernicious effect. This supposed principle, somet ..."
Abstract

Cited by 11 (2 self)
 Add to MetaCart
A myth has arisen concerning Turing's paper of 1936, namely that Turing set forth a fundamental principle concerning the limits of what can be computed by machine  a myth that has passed into cognitive science and the philosophy of mind, to wide and pernicious effect. This supposed principle, sometimes incorrectly termed the 'ChurchTuring thesis', is the claim that the class of functions that can be computed by machines is identical to the class of functions that can be computed by Turing machines. In point of fact Turing himself nowhere endorses, nor even states, this claim (nor does Church). I describe a number of notional machines, both analogue and digital, that can compute more than a universal Turing machine. These machines are exemplars of the class of nonclassical computing machines. Nothing known at present rules out the possibility that machines in this class will one day be built, nor that the brain itself is such a machine. These theoretical considerations undercut a numb...
How can Nature help us compute
 SOFSEM 2006: Theory and Practice of Computer Science – 32nd Conference on Current Trends in Theory and Practice of Computer Science, Merin, Czech Republic, January 21–27
, 2006
"... Abstract. Ever since Alan Turing gave us a machine model of algorithmic computation, there have been questions about how widely it is applicable (some asked by Turing himself). Although the computer on our desk can be viewed in isolation as a Universal Turing Machine, there are many examples in natu ..."
Abstract

Cited by 11 (3 self)
 Add to MetaCart
Abstract. Ever since Alan Turing gave us a machine model of algorithmic computation, there have been questions about how widely it is applicable (some asked by Turing himself). Although the computer on our desk can be viewed in isolation as a Universal Turing Machine, there are many examples in nature of what looks like computation, but for which there is no wellunderstood model. In many areas, we have to come to terms with emergence not being clearly algorithmic. The positive side of this is the growth of new computational paradigms based on metaphors for natural phenomena, and the devising of very informative computer simulations got from copying nature. This talk is concerned with general questions such as: • Can natural computation, in its various forms, provide us with genuinely new ways of computing? • To what extent can natural processes be captured computationally? • Is there a universal model underlying these new paradigms?
Emergence as a ComputabilityTheoretic Phenomenon
, 2008
"... In dealing with emergent phenomena, a common task is to identify useful descriptions of them in terms of the underlying atomic processes, and to extract enough computational content from these descriptions to enable predictions to be made. Generally, the underlying atomic processes are quite well un ..."
Abstract

Cited by 3 (1 self)
 Add to MetaCart
In dealing with emergent phenomena, a common task is to identify useful descriptions of them in terms of the underlying atomic processes, and to extract enough computational content from these descriptions to enable predictions to be made. Generally, the underlying atomic processes are quite well understood, and (with important exceptions) captured by mathematics from which it is relatively easy to extract algorithmic content. A widespread view is that the difficulty in describing transitions from algorithmic activity to the emergence associated with chaotic situations is a simple case of complexity outstripping computational resources and human ingenuity. Or, on the other hand, that phenomena transcending the standard Turing model of computation, if they exist, must necessarily lie outside the domain of classical computability theory. In this talk we suggest that much of the current confusion arises from conceptual gaps and the lack of a suitably fundamental model within which to situate emergence. We examine the potential for placing emergent relations in a familiar context based on Turing’s 1939 model for interactive computation over structures described in terms of reals. The explanatory power of this model is explored, formalising informal descriptions in terms of mathematical definability and invariance, and relating a range of basic scientific puzzles to results and intractable problems in computability theory. In this talk
A natural axiomatization of Church’s thesis
, 2007
"... The Abstract State Machine Thesis asserts that every classical algorithm is behaviorally equivalent to an abstract state machine. This thesis has been shown to follow from three natural postulates about algorithmic computation. Here, we prove that augmenting those postulates with an additional requ ..."
Abstract

Cited by 2 (0 self)
 Add to MetaCart
The Abstract State Machine Thesis asserts that every classical algorithm is behaviorally equivalent to an abstract state machine. This thesis has been shown to follow from three natural postulates about algorithmic computation. Here, we prove that augmenting those postulates with an additional requirement regarding basic operations implies Church’s Thesis, namely, that the only numeric functions that can be calculated by effective means are the recursive ones (which are the same, extensionally, as the Turingcomputable numeric functions). In particular, this gives a natural axiomatization of Church’s Thesis, as Gödel and others suggested may be possible.
The Extended Turing Model As Contextual Tool
"... Abstract. Computability concerns information with a causal – typically algorithmic – structure. As such, it provides a schematic analysis of many naturally occurring situations. We look at ways in which computabilitytheoretic structure emerges in natural contexts. We will look at how algorithmic str ..."
Abstract
 Add to MetaCart
Abstract. Computability concerns information with a causal – typically algorithmic – structure. As such, it provides a schematic analysis of many naturally occurring situations. We look at ways in which computabilitytheoretic structure emerges in natural contexts. We will look at how algorithmic structure does not just emerge mathematically from information, but how that emergent structure can model the emergence of very basic aspects of the real world. The adequacy of the classical Turing model of computation — as first presented in [18] — is in question in many contexts. There is widespread doubt concerning the reducibility to this model of a broad spectrum of realworld processes and natural phenomena, from basic quantum mechanics to aspects of evolutionary development, or human mental activity. In 1939 Turing [19] described an extended model providing mathematical form to the algorithmic content of structures which are presented in terms of real numbers. Most scientific laws with a computational content can be framed
Turing's Omachines, Searle, Penrose and the Brain
"... In his PhD thesis (1938) Turing introduced what he described as 'a new kind of machine'. He called these 'Omachines'. The present paper employs Turing's concept against a number of currently fashionable positions in the philosophy of mind. ..."
Abstract
 Add to MetaCart
In his PhD thesis (1938) Turing introduced what he described as 'a new kind of machine'. He called these 'Omachines'. The present paper employs Turing's concept against a number of currently fashionable positions in the philosophy of mind.
TURING AND THE PHYSICS OF THE MIND
, 2011
"... Turing's lecture 'Can Digital Computers Think? ' was broadcast on BBC Radio on 15th May 1951 (repeated on 3rd July). It was the second in a series of lectures entitled 'Automatic ..."
Abstract
 Add to MetaCart
Turing's lecture 'Can Digital Computers Think? ' was broadcast on BBC Radio on 15th May 1951 (repeated on 3rd July). It was the second in a series of lectures entitled 'Automatic
Springer, New York 2009. Indiscrete Variations on GianCarlo Rota’s Themes
"... I never met GianCarlo Rota but I have often made references to his writings on the philosophy of mathematics, sometimes agreeing, sometimes disagreeing. In this paper I will discuss his views concerning four questions: the existence of mathematical objects, definition in mathematics, the notion of ..."
Abstract
 Add to MetaCart
I never met GianCarlo Rota but I have often made references to his writings on the philosophy of mathematics, sometimes agreeing, sometimes disagreeing. In this paper I will discuss his views concerning four questions: the existence of mathematical objects, definition in mathematics, the notion of