Results 1 
6 of
6
A Hidden Agenda
 Theoretical Computer Science
, 2000
"... This paper publicly reveals, motivates, and surveys the results of an ambitious hidden agenda for applying algebra to software engineering. The paper reviews selected literature, introduces a new perspective on nondeterminism, and features powerful hidden coinduction techniques for proving behaviora ..."
Abstract

Cited by 136 (23 self)
 Add to MetaCart
This paper publicly reveals, motivates, and surveys the results of an ambitious hidden agenda for applying algebra to software engineering. The paper reviews selected literature, introduces a new perspective on nondeterminism, and features powerful hidden coinduction techniques for proving behavioral properties of concurrent systems, especially renements; some proofs are given using OBJ3. We also discuss where modularization, bisimulation, transition systems and combinations of the object, logic, constraint and functional paradigms t into our hidden agenda. 1 Introduction Algebra can be useful in many dierent ways in software engineering, including specication, validation, language design, and underlying theory. Specication and validation can help in the practical production of reliable programs, advances in language design can help improve the state of the art, and theory can help with building new tools to increase automation, as well as with showing correctness of the whole e...
Proving Correctness Of Refinement And Implementation
, 1996
"... The notions of state and observable behaviour are fundamental to many areas of computer science. Hidden sorted algebra, an extension of many sorted algebra, captures these notions through hidden sorts and the behavioural satisfaction of equations. This makes it a powerful formalisation of abstract m ..."
Abstract

Cited by 28 (4 self)
 Add to MetaCart
The notions of state and observable behaviour are fundamental to many areas of computer science. Hidden sorted algebra, an extension of many sorted algebra, captures these notions through hidden sorts and the behavioural satisfaction of equations. This makes it a powerful formalisation of abstract machines, and many results suggest that it is also suitable for the semantics of the object paradigm. Another extension of many sorted algebra, namely order sorted algebra, has proved useful in system specification and prototyping because of the way it handles subtypes and errors. The combination of these two algebraic approaches, hidden order sorted algebra, has also been proposed as a foundation for object paradigm, and has much promise as a foundation for Software Engineering. This paper extends recent work on hidden order sorted algebra by investigating the refinement and implementation of hidden order sorted specifications. We present definitions of refinement and implementation for suc...
Hidden Coinduction: Behavioral Correctness Proofs for Objects
 Mathematical Structures in Computer Science
, 1999
"... This paper unveils and motivates an ambitious programme of hidden algebraic research in software engineering, beginning with our general goals, continuing with an overview of results, and including some future plans. The main contribution is powerful hidden coinduction techniques for proving behavio ..."
Abstract

Cited by 22 (8 self)
 Add to MetaCart
This paper unveils and motivates an ambitious programme of hidden algebraic research in software engineering, beginning with our general goals, continuing with an overview of results, and including some future plans. The main contribution is powerful hidden coinduction techniques for proving behavioral correctness of concurrent systems; several mechanical proofs are given using OBJ3. We also show how modularization, bisimulation, transition systems, concurrency and combinations of the functional, constraint, logic and object paradigms fit into hidden algebra. 1. Introduction
Structuring and Modularity
 on Algebraic Foundations of Systems Specification, chapter 6
, 1996
"... this paper, we will describe the main techniques for the semantic definition of some of the most used structuring and modular constructs. Our main aim will be to study the generic, "institutionindependent ", version of each construct. However, in order to provide intuition, in most cases, ..."
Abstract

Cited by 7 (0 self)
 Add to MetaCart
this paper, we will describe the main techniques for the semantic definition of some of the most used structuring and modular constructs. Our main aim will be to study the generic, "institutionindependent ", version of each construct. However, in order to provide intuition, in most cases, we will first study these constructions in connection to equational logic.
Institutions for Logic Programming
 Theoretical Computer Science
, 1997
"... The compositionality of the semantics of logic programs with respect to (different varieties of) program union has been studied recently by a number of researchers. The approaches used can be considered quite adhoc in the sense that they provide, from scratch, the semantic constructions needed to e ..."
Abstract

Cited by 5 (1 self)
 Add to MetaCart
(Show Context)
The compositionality of the semantics of logic programs with respect to (different varieties of) program union has been studied recently by a number of researchers. The approaches used can be considered quite adhoc in the sense that they provide, from scratch, the semantic constructions needed to ensure compositionality and, in some cases, full abstraction in the given framework. In this paper, we study the application of general algebraic methods for obtaining, systematically, this kind of results. In particular, the method proposed consists in studying the adequate institution for describing the given class of logic programs and, then, in using general institutionindependent results to prove compositionality and full abstraction. This is done in detail for the class of definite logic programs with respect to three kinds of composition operations: Wunion, standard union and module composition. In addition two different institutions are considered: the standard institution...
Algebraic Methods in the Compositional Analysis of Logic Programs
 IN MATHEMATICAL FOUNDATIONS OF COMPUTER SCIENCE 94 (I. PRIVARA, B. ROVAN, P. RUZICKA, EDS.) SPRINGERVERLAG LECTURE NOTES IN COMPUTER SCIENCE 841
, 1994
"... The compositionality of the semantics of logic programs with respect to (different varieties of) program union has been studied recently by a number of researchers. The approaches used can be considered quite adhoc in the sense that they provide, from scratch, the semantic constructions needed ..."
Abstract

Cited by 2 (1 self)
 Add to MetaCart
The compositionality of the semantics of logic programs with respect to (different varieties of) program union has been studied recently by a number of researchers. The approaches used can be considered quite adhoc in the sense that they provide, from scratch, the semantic constructions needed to ensure compositionality and, in some cases, full abstraction in the given framework. In this paper, we study the application of general algebraic methods for obtaining, systematically, this kind of results. In particular, the method proposed consists in defining the adequate institution for describing the given class of logic programs and, then, in using general institutionindependent results to prove compositionality and full abstraction. This is done in detail for the class of definite logic programs, where the associated institution is defined in such a way that initial algebra semantics is equivalent to computed answer substitution semantics. Then a similar solution is sketc...