Results 1  10
of
98
Approximate MaxFlow Min(multi)cut Theorems and Their Applications
 SIAM Journal on Computing
, 1993
"... Consider the multicommodity flow problem in which the object is to maximize the sum of commodities routed. We prove the following approximate maxflow minmulticut theorem: min multicut O(logk) max flow min multicut; where k is the number of commodities. Our proof is constructive; it enables us ..."
Abstract

Cited by 164 (3 self)
 Add to MetaCart
(Show Context)
Consider the multicommodity flow problem in which the object is to maximize the sum of commodities routed. We prove the following approximate maxflow minmulticut theorem: min multicut O(logk) max flow min multicut; where k is the number of commodities. Our proof is constructive; it enables us to find a multicut within O(log k) of the max flow (and hence also the optimal multicut). In addition, the proof technique provides a unified framework in which one can also analyse the case of flows with specified demands, of LeightonRao and Klein et.al., and thereby obtain an improved bound for the latter problem. 1 Introduction Much of flow theory, and the theory of cuts in graphs, is built around a single theorem  the celebrated maxflow mincut theorem of Ford and Fulkerson [FF], and Elias, Feinstein and Shannon [EFS]. The power of this theorem lies in that it relates two fundamental graphtheoretic entities via the potent mechanism of a minmax relation. The importance of this theor...
An O(log k) approximate mincut maxflow theorem and approximation algorithm
 SIAM J. Comput
, 1998
"... Abstract. It is shown that the minimum cut ratio is within a factor of O(log k) of the maximum concurrent flow for kcommodity flow instances with arbitrary capacities and demands. This improves upon the previously bestknown bound of O(log 2 k) and is existentially tight, up to a constant factor. A ..."
Abstract

Cited by 140 (6 self)
 Add to MetaCart
(Show Context)
Abstract. It is shown that the minimum cut ratio is within a factor of O(log k) of the maximum concurrent flow for kcommodity flow instances with arbitrary capacities and demands. This improves upon the previously bestknown bound of O(log 2 k) and is existentially tight, up to a constant factor. An algorithm for finding a cut with ratio within a factor of O(log k) of the maximum concurrent flow, and thus of the optimal mincut ratio, is presented.
A new approach to the minimum cut problem
 Journal of the ACM
, 1996
"... Abstract. This paper presents a new approach to finding minimum cuts in undirected graphs. The fundamental principle is simple: the edges in a graph’s minimum cut form an extremely small fraction of the graph’s edges. Using this idea, we give a randomized, strongly polynomial algorithm that finds th ..."
Abstract

Cited by 122 (9 self)
 Add to MetaCart
Abstract. This paper presents a new approach to finding minimum cuts in undirected graphs. The fundamental principle is simple: the edges in a graph’s minimum cut form an extremely small fraction of the graph’s edges. Using this idea, we give a randomized, strongly polynomial algorithm that finds the minimum cut in an arbitrarily weighted undirected graph with high probability. The algorithm runs in O(n 2 log 3 n) time, a significant improvement over the previous Õ(mn) time bounds based on maximum flows. It is simple and intuitive and uses no complex data structures. Our algorithm can be parallelized to run in �� � with n 2 processors; this gives the first proof that the minimum cut problem can be solved in ���. The algorithm does more than find a single minimum cut; it finds all of them. With minor modifications, our algorithm solves two other problems of interest. Our algorithm finds all cuts with value within a multiplicative factor of � of the minimum cut’s in expected Õ(n 2 � ) time, or in �� � with n 2 � processors. The problem of finding a minimum multiway cut of a graph into r pieces is solved in expected Õ(n 2(r�1) ) time, or in �� � with n 2(r�1) processors. The “trace ” of the algorithm’s execution on these two problems forms a new compact data structure for representing all small cuts and all multiway cuts in a graph. This data structure can be efficiently transformed into the
An Emulator Network for
 SIMD Machine Interconnection Networks, in: Proc. 6 th annual symposium on Computer architecture
, 1979
"... Fig. 0.1. [Proposed cover figure.] The largest connected component of a network of network scientists. This network was constructed based on the coauthorship of papers listed in two wellknown review articles [13,83] and a small number of additional papers that were added manually [86]. Each node is ..."
Abstract

Cited by 84 (12 self)
 Add to MetaCart
(Show Context)
Fig. 0.1. [Proposed cover figure.] The largest connected component of a network of network scientists. This network was constructed based on the coauthorship of papers listed in two wellknown review articles [13,83] and a small number of additional papers that were added manually [86]. Each node is colored according to community membership, which was determined using a leadingeigenvector spectral method followed by KernighanLin nodeswapping steps [64, 86, 107]. To determine community placement, we used the FruchtermanReingold graph visualization [45], a forcedirected layout method that is related to maximizing a quality function known as modularity [92]. To apply this method, we treated the communities as if they were themselves the nodes of a (significantly smaller) network with connections rescaled by intercommunity links. We then used the KamadaKawaii springembedding graph visualization algorithm [62] to place the nodes of each individual community (ignoring intercommunity links) and then to rotate and flip the communities for optimal placement (including intercommunity links). We gratefully acknowledge Amanda Traud for preparing this figure. COMMUNITIES IN NETWORKS
Reliable physical layer network coding
 Proceedings of the IEEE
, 2011
"... Abstract—When two or more users in a wireless network transmit simultaneously, their electromagnetic signals are linearly superimposed on the channel. As a result, a receiver that is interested in one of these signals sees the others as unwanted interference. This property of the wireless medium is ..."
Abstract

Cited by 52 (6 self)
 Add to MetaCart
(Show Context)
Abstract—When two or more users in a wireless network transmit simultaneously, their electromagnetic signals are linearly superimposed on the channel. As a result, a receiver that is interested in one of these signals sees the others as unwanted interference. This property of the wireless medium is typically viewed as a hindrance to reliable communication over a network. However, using a recently developed coding strategy, interference can in fact be harnessed for network coding. In a wired network, (linear) network coding refers to each intermediate node taking its received packets, computing a linear combination over a finite field, and forwarding the outcome towards the destinations. Then, given an appropriate set of linear combinations, a destination can solve for its desired packets. For certain topologies, this strategy can attain significantly higher throughputs over routingbased strategies. Reliable physical layer network coding takes this idea one step further: using judiciously chosen linear errorcorrecting codes, intermediate nodes in a wireless network can directly recover linear combinations of the packets from the observed noisy superpositions of transmitted signals. Starting with some simple examples, this survey explores the core ideas behind this new technique and the possibilities it offers for communication over interferencelimited wireless networks. Index Terms—Digital communication, wireless networks, interference, network coding, channel coding, linear code, modulation, physical layer, fading, multiuser channels, multiple access, broadcast. I.
Improved approximation algorithms for unsplittable flow problems (Extended Abstract)
 In Proceedings of the 38th Annual Symposium on Foundations of Computer Science
, 1997
"... ) Stavros G. Kolliopoulos 1 Clifford Stein 1 Abstract In the singlesource unsplittable flow problem we are given a graph G; a source vertex s and a set of sinks t 1 ; : : : ; t k with associated demands. We seek a single st i flow path for each commodity i so that the demands are satisfied and ..."
Abstract

Cited by 45 (2 self)
 Add to MetaCart
(Show Context)
) Stavros G. Kolliopoulos 1 Clifford Stein 1 Abstract In the singlesource unsplittable flow problem we are given a graph G; a source vertex s and a set of sinks t 1 ; : : : ; t k with associated demands. We seek a single st i flow path for each commodity i so that the demands are satisfied and the total flow routed across any edge e is bounded by its capacity c e : The problem is an NPhard variant of max flow and a generalization of singlesource edgedisjoint paths with applications to scheduling, load balancing and virtualcircuit routing problems. In a significant development, Kleinberg gave recently constantfactor approximation algorithms for several natural optimization versions of the problem [18]. In this paper we give a generic framework that yields simpler algorithms and significant improvements upon the constant factors. Our framework, with appropriate subroutines, applies to all optimization versions previously considered and treats in a unified manner directed and u...
Edgecut bounds on network coding rates
 J. Network and Systems Management
, 2006
"... AbstractActive networks are network architectures with processors that are capable of executing code carried by the packets passing through them. A critical network management concern is the optimization of such networks and tight bounds on their performance serve as useful design benchmarks. A ne ..."
Abstract

Cited by 44 (4 self)
 Add to MetaCart
(Show Context)
AbstractActive networks are network architectures with processors that are capable of executing code carried by the packets passing through them. A critical network management concern is the optimization of such networks and tight bounds on their performance serve as useful design benchmarks. A new bound on communication rates is developed that applies to network coding, which is a promising active network application that has processors transmit packets that are general functions, for example a bitwise XOR, of selected received packets. The bound generalizes an edgecut bound on routing rates by progressively removing edges from the network graph and checking whether certain strengthened dseparation conditions are satised. The bound improves on the cutset bound and its efcacy is demonstrated by showing that routing is rateoptimal for some commonly cited examples in the networking literature. Index Terms Network capacity, network coding, active networks, dseparation 1.
Experimental Study of Minimum Cut Algorithms
 PROCEEDINGS OF THE EIGHTH ANNUAL ACMSIAM SYMPOSIUM ON DISCRETE ALGORITHMS (SODA)
, 1997
"... Recently, several new algorithms have been developed for the minimum cut problem. These algorithms are very different from the earlier ones and from each other and substantially improve worstcase time bounds for the problem. We conduct experimental evaluation the relative performance of these algor ..."
Abstract

Cited by 42 (3 self)
 Add to MetaCart
(Show Context)
Recently, several new algorithms have been developed for the minimum cut problem. These algorithms are very different from the earlier ones and from each other and substantially improve worstcase time bounds for the problem. We conduct experimental evaluation the relative performance of these algorithms. In the process, we develop heuristics and data structures that substantially improve practical performance of the algorithms. We also develop problem families for testing minimum cut algorithms. Our work leads to a better understanding of practical performance of the minimum cut algorithms and produces very efficient codes for the problem.
Electrical Flows, Laplacian Systems, and Faster Approximation of Maximum Flow in Undirected Graphs
, 2010
"... We introduce a new approach to computing an approximately maximum st flow in a capacitated, undirected graph. This flow is computed by solving a sequence of electrical flow problems. Each electrical flow is given by the solution of a system of linear equations in a Laplacian matrix, and thus may be ..."
Abstract

Cited by 37 (6 self)
 Add to MetaCart
(Show Context)
We introduce a new approach to computing an approximately maximum st flow in a capacitated, undirected graph. This flow is computed by solving a sequence of electrical flow problems. Each electrical flow is given by the solution of a system of linear equations in a Laplacian matrix, and thus may be approximately computed in nearlylinear time. Using this approach, we develop the fastest known algorithm for computing approximately maximum st flows. For a graph having n vertices and m edges, our algorithm computes a (1−ɛ)approximately maximum st flow in time 1 Õ ( mn 1/3 ɛ −11/3). A dual version of our approach computes a (1 + ɛ)approximately minimum st cut in time Õ ( m + n 4/3 ɛ −16/3) , which is the fastest known algorithm for this problem as well. Previously, the best dependence on m and n was achieved by the algorithm of Goldberg and Rao (J. ACM 1998), which can be used to compute approximately maximum st flows in time Õ ( m √ nɛ −1) , and approximately minimum st cuts in time Õ ( m + n 3/2 ɛ −3). Research partially supported by NSF grant CCF0843915.