Results 21  30
of
202
Proof theory for admissible rules
, 2006
"... The admissible rules of a logic are the rules under which the set of theorems of the logic is closed. In this paper a Gentzenstyle framework is introduced for defining analytic proof systems that derive the admissible rules of various nonclassical logics. Just as Gentzen systems for derivability t ..."
Abstract

Cited by 16 (4 self)
 Add to MetaCart
The admissible rules of a logic are the rules under which the set of theorems of the logic is closed. In this paper a Gentzenstyle framework is introduced for defining analytic proof systems that derive the admissible rules of various nonclassical logics. Just as Gentzen systems for derivability treat sequents as basic objects, for admissibility, sequent rules are basic. Proof systems are defined here for the admissible rules of classes of both modal logics, including K4, S4, and GL, and intermediate logics, including Intuitionistic logic IPC, De Morgan (or Jankov) logic KC, and logics BCn (n = 1, 2,...) with bounded cardinality Kripke models. With minor restrictions, proof search in these systems terminates, giving decision procedures for admissibility in the corresponding logics.
Labelled Modal Logics: Quantifiers
, 1998
"... . In previous work we gave an approach, based on labelled natural deduction, for formalizing proof systems for a large class of propositional modal logics that includes K, D, T, B, S4, S4:2, KD45, and S5. Here we extend this approach to quantified modal logics, providing formalizations for logic ..."
Abstract

Cited by 15 (2 self)
 Add to MetaCart
. In previous work we gave an approach, based on labelled natural deduction, for formalizing proof systems for a large class of propositional modal logics that includes K, D, T, B, S4, S4:2, KD45, and S5. Here we extend this approach to quantified modal logics, providing formalizations for logics with varying, increasing, decreasing, or constant domains. The result is modular with respect to both properties of the accessibility relation in the Kripke frame and the way domains of individuals change between worlds. Our approach has a modular metatheory too; soundness, completeness and normalization are proved uniformly for every logic in our class. Finally, our work leads to a simple implementation of a modal logic theorem prover in a standard logical framework. 1 Introduction Motivation Modal logic is an active area of research in computer science and artificial intelligence: a large number of modal logics have been studied and new ones are frequently proposed. Each new log...
Semantic cut elimination in the intuitionistic sequent calculus
 Typed Lambda Calculi and Applications, number 3461 in Lectures
, 2005
"... Abstract. Cut elimination is a central result of the proof theory. This paper proposes a new approach for proving the theorem for Gentzen’s intuitionistic sequent calculus LJ, that relies on completeness of the cutfree calculus with respect to Kripke Models. The proof defines a general framework to ..."
Abstract

Cited by 15 (10 self)
 Add to MetaCart
(Show Context)
Abstract. Cut elimination is a central result of the proof theory. This paper proposes a new approach for proving the theorem for Gentzen’s intuitionistic sequent calculus LJ, that relies on completeness of the cutfree calculus with respect to Kripke Models. The proof defines a general framework to extend the cut elimination result to other intuitionistic deduction systems, in particular to deduction modulo provided the rewrite system verifies some properties. We also give an example of rewrite system for which cut elimination holds but that doesn’t enjoys proof normalization.
Lectures on proof theory
 in Proc. Summer School in Logic, Leeds 67
, 1968
"... This is a survey of some of the principal developments in proof theory from its inception in the 1920s, at the hands of David Hilbert, up to the 1960s. Hilbert's aim was to use this as a tool in his nitary consistency program to eliminate the \actual in nite " in mathematics from proofs of ..."
Abstract

Cited by 15 (5 self)
 Add to MetaCart
This is a survey of some of the principal developments in proof theory from its inception in the 1920s, at the hands of David Hilbert, up to the 1960s. Hilbert's aim was to use this as a tool in his nitary consistency program to eliminate the \actual in nite " in mathematics from proofs of purely nitary statements. One of the main approaches that turned out to be the most useful in pursuit of this program was that due to Gerhard Gentzen, in the 1930s, via his calculi of \sequents" and his CutElimination Theorem for them. Following that we trace how and why prima facie in nitary concepts, such as ordinals, and in nitary methods, such as the use of in nitely long proofs, gradually came to dominate prooftheoretical developments. In this rst lecture I will give anoverview of the developments in proof theory since Hilbert's initiative in establishing the subject in the 1920s. For this purpose I am following the rst part of a series of expository lectures that I gave for the Logic Colloquium `94 held in ClermontFerrand 2123 July 1994, but haven't published. The theme of my lectures there was that although Hilbert established his theory of proofs as a part of his foundational program and, for philosophical reasons whichwe shall get into, aimed to have it developed in a completely nitistic way, the actual work in proof theory This is the rst of three lectures that I delivered at the conference, Proof Theory: History
Cutelimination and proofsearch for biintuitionistic logic using nested sequents
, 2008
"... We propose a new sequent calculus for biintuitionistic logic which sits somewhere between display calculi and traditional sequent calculi by using nested sequents. Our calculus enjoys a simple (purely syntactic) cutelimination proof as do display calculi. But it has an easily derivable variant cal ..."
Abstract

Cited by 15 (4 self)
 Add to MetaCart
We propose a new sequent calculus for biintuitionistic logic which sits somewhere between display calculi and traditional sequent calculi by using nested sequents. Our calculus enjoys a simple (purely syntactic) cutelimination proof as do display calculi. But it has an easily derivable variant calculus which is amenable to automated proof search as are (some) traditional sequent calculi. We first present the initial calculus and its cutelimination proof. We then present the derived calculus, and then present a proofsearch strategy which allows it to be used for automated proof search. We prove that this search strategy is terminating and complete by showing how it can be used to mimic derivations obtained from an existing calculus GBiInt for biintuitionistic logic. As far as we know, our new calculus is the first sequent calculus for biintuitionistic logic which uses no semantic additions like labels, which has a purely syntactic cutelimination proof, and which can be used naturally for backwards proofsearch.
Natural Deduction for NonClassical Logics
, 1996
"... We present a framework for machine implementation of families of nonclassical logics with Kripkestyle semantics. We decompose a logic into two interacting parts, each a natural deduction system: a base logic of labelled formulae, and a theory of labels characterizing the properties of the Kripke m ..."
Abstract

Cited by 13 (3 self)
 Add to MetaCart
We present a framework for machine implementation of families of nonclassical logics with Kripkestyle semantics. We decompose a logic into two interacting parts, each a natural deduction system: a base logic of labelled formulae, and a theory of labels characterizing the properties of the Kripke models. By appropriate combinations we capture both partial and complete fragments of large families of nonclassical logics such as modal, relevance, and intuitionistic logics. Our approach is modular and supports uniform proofs of correctness and proof normalization. We have implemented our work in the Isabelle Logical Framework.
Coalgebraic hybrid logic
 IN FOUNDATIONS OF SOFTWARE SCIENCE AND COMPUTATION STRUCTURES, FOSSACS 09, VOLUME 5504 OF LNCS
, 2009
"... We introduce a generic framework for hybrid logics, i.e. modal logics additionally featuring nominals and satisfaction operators, thus providing the necessary facilities for reasoning about individual states in a model. This framework, coalgebraic hybrid logic, works at the same level of generality ..."
Abstract

Cited by 13 (10 self)
 Add to MetaCart
(Show Context)
We introduce a generic framework for hybrid logics, i.e. modal logics additionally featuring nominals and satisfaction operators, thus providing the necessary facilities for reasoning about individual states in a model. This framework, coalgebraic hybrid logic, works at the same level of generality as coalgebraic modal logic, and in particular subsumes, besides normal hybrid logics such as hybrid K, a wide variety of logics with nonnormal modal operators such as probabilistic, graded, or coalitional modalities and nonmonotonic conditionals. We prove a generic finite model property and an ensuing weak completeness result, and we give a semantic criterion for decidability in PSPACE. Moreover, we present a fully internalised PSPACE tableau calculus. These generic results are easily instantiated to particular hybrid logics and thus yield a wide range of new results, including e.g. decidability in PSPACE of probabilistic and graded hybrid logics.
A local system for intuitionistic logic
 of Lecture Notes in Artificial Intelligence
, 2006
"... Abstract. This paper presents systems for firstorder intuitionistic logic and several of its extensions in which all the propositional rules are local, in the sense that, in applying the rules of the system, one needs only a fixed amount of information about the logical expressions involved. The ma ..."
Abstract

Cited by 13 (1 self)
 Add to MetaCart
(Show Context)
Abstract. This paper presents systems for firstorder intuitionistic logic and several of its extensions in which all the propositional rules are local, in the sense that, in applying the rules of the system, one needs only a fixed amount of information about the logical expressions involved. The main source of nonlocality is the contraction rules. We show that the contraction rules can be restricted to the atomic ones, provided we employ deepinference, i.e., to allow rules to apply anywhere inside logical expressions. We further show that the use of deep inference allows for modular extensions of intuitionistic logic to Dummett’s intermediate logic LC, Gödel logic and classical logic. We present the systems in the calculus of structures, a proof theoretic formalism which supports deepinference. Cut elimination for these systems are proved indirectly by simulating the cutfree sequent systems, or the hypersequent systems in the cases of Dummett’s LC and Gödel logic, in the cut free systems in the calculus of structures.
A New Method for Bounding the Complexity of Modal Logics
, 1997
"... . We present a new prooftheoretic approach to bounding the complexity of the decision problem for propositional modal logics. We formalize logics in a uniform way as sequent systems and then restrict the structural rules for particular systems. This, combined with an analysis of the accessibility r ..."
Abstract

Cited by 12 (2 self)
 Add to MetaCart
. We present a new prooftheoretic approach to bounding the complexity of the decision problem for propositional modal logics. We formalize logics in a uniform way as sequent systems and then restrict the structural rules for particular systems. This, combined with an analysis of the accessibility relation of the corresponding Kripke structures, yields decision procedures with bounded space requirements. As examples we give O(n log n) space procedures for the modal logics K and T. 1 Introduction We present a new prooftheoretic approach to bounding the complexity of the decision problem for propositional modal logics. We formalize logics in a uniform way as cutfree labelled sequent systems and then restrict the structural rules for particular systems. This, combined with an analysis of the accessibility relation of the corresponding Kripke structures, yields decision procedures with space requirements that are easily bounded. As examples we give O(n log n) space decision procedures f...