Results 11  20
of
70
A Knapsack Type Public Key Cryptosystem Based On Arithmetic in Finite Fields
 IEEE Trans. Inform. Theory
, 1988
"... { A new knapsack type public key cryptosystem is introduced. The system is based on a novel application of arithmetic in nite elds, following a construction by Bose and Chowla. By appropriately choosing the parameters, one can control the density of the resulting knapsack, which is the ratio between ..."
Abstract

Cited by 35 (2 self)
 Add to MetaCart
{ A new knapsack type public key cryptosystem is introduced. The system is based on a novel application of arithmetic in nite elds, following a construction by Bose and Chowla. By appropriately choosing the parameters, one can control the density of the resulting knapsack, which is the ratio between the number of elements in the knapsack and their size in bits. In particular, the density can be made high enough to foil \low density" attacks against our system. At the moment, no attacks capable of \breaking" this system in a reasonable amount of time are known. Research supported by NSF grant MCS{8006938. Part of this research was done while the rst author was visiting Bell Laboratories, Murray Hill, NJ. A preliminary version of this work was presented in Crypto 84 and has appeared in [8]. 1 1.
Batch RSA
, 1996
"... We present a variant of the RSA algorithm called Batch RSA with two important properties: • The cost per private operation is exponentially smaller than other number theoretic schemes ([9, 23, 22, 11, 13, 12], etc.). In practice, the new variant effectively performs several modular exponentiati ..."
Abstract

Cited by 32 (0 self)
 Add to MetaCart
We present a variant of the RSA algorithm called Batch RSA with two important properties: • The cost per private operation is exponentially smaller than other number theoretic schemes ([9, 23, 22, 11, 13, 12], etc.). In practice, the new variant effectively performs several modular exponentiations at the cost of a single modular exponentiation. This leads to a very fast RSAlike scheme whenever RSA is to be performed at some central site or when pureRSA encryption (vs. hybrid encryption) is to be performed. • An additional important feature of Batch RSA is the possibility of using a distributed Batch RSA process that isolates the private key from the system, irrespective of the size of the system, the number of sites, or the number of private operations that need be performed.
Doing more with fewer bits
 Proceedings Asiacrypt99, LNCS 1716, SpringerVerlag
, 1999
"... Abstract. We present a variant of the DiffieHellman scheme in which the number of bits exchanged is one third of what is used in the classical DiffieHellman scheme, while the offered security against attacks known today is the same. We also give applications for this variant and conjecture a exten ..."
Abstract

Cited by 27 (4 self)
 Add to MetaCart
Abstract. We present a variant of the DiffieHellman scheme in which the number of bits exchanged is one third of what is used in the classical DiffieHellman scheme, while the offered security against attacks known today is the same. We also give applications for this variant and conjecture a extension of this variant further reducing the size of sent information. 1
The function field sieve in the medium prime case
 Advances in Cryptology – EUROCRYPT 2006, LNCS 4004 (2006
"... Abstract. In this paper, we study the application of the function field sieve algorithm for computing discrete logarithms over finite fields of the form Fqn when q is a mediumsized prime power. This approach is an alternative to a recent paper of Granger and Vercauteren for computing discrete logar ..."
Abstract

Cited by 27 (8 self)
 Add to MetaCart
Abstract. In this paper, we study the application of the function field sieve algorithm for computing discrete logarithms over finite fields of the form Fqn when q is a mediumsized prime power. This approach is an alternative to a recent paper of Granger and Vercauteren for computing discrete logarithms in tori, using efficient torus representations. We show that when q is not too large, a very efficient L(1/3) variation of the function field sieve can be used. Surprisingly, using this algorithm, discrete logarithms computations over some of these fields are even easier than computations in the prime field and characteristic two field cases. We also show that this new algorithm has security implications on some existing cryptosystems, such as torus based cryptography in T30, short signature schemes in characteristic 3 and cryptosystems based on supersingular abelian varieties. On the other hand, cryptosystems involving larger basefields and smaller extension degrees, typically of degree at most 6, such as LUC, XTR or T6 torus cryptography, are not affected. 1
Test Embedding with Discrete Logarithms
 IEEE VLSI TEST SYMP
, 1994
"... When using BuiltIn Self Test (BIST) for testing VLSI circuits, a major concern is the generation of proper test patterns that detect the faults of interest. Usually a linear feedback shift register (LFSR) is used to generate test patterns. We first analyze the probability that an arbitrary pseudor ..."
Abstract

Cited by 24 (1 self)
 Add to MetaCart
When using BuiltIn Self Test (BIST) for testing VLSI circuits, a major concern is the generation of proper test patterns that detect the faults of interest. Usually a linear feedback shift register (LFSR) is used to generate test patterns. We first analyze the probability that an arbitrary pseudorandom test sequence of short length detects all faults. The term short is relative to the probability of detecting the fault with the fewest test patterns. We then show how to guide the search for an initial state (seed) for a LFSR with a given primitive feedback polynomial so that all the faults of interest are detected by a minimum length test sequence. Our algorithm is based on finding the location of test patterns in the sequence generated by this LFSR. This is accomplished using the theory of discrete logarithms. We then select the shortest subsequence that includes test patterns for all the faults of interest, hence resulting in 100% fault coverage.
Improvements to the general number field sieve for discrete logarithms in prime fields
 Mathematics of Computation
, 2003
"... Abstract. In this paper, we describe many improvements to the number field sieve. Our main contribution consists of a new way to compute individual logarithms with the number field sieve without solving a very large linear system for each logarithm. We show that, with these improvements, the number ..."
Abstract

Cited by 14 (1 self)
 Add to MetaCart
Abstract. In this paper, we describe many improvements to the number field sieve. Our main contribution consists of a new way to compute individual logarithms with the number field sieve without solving a very large linear system for each logarithm. We show that, with these improvements, the number field sieve outperforms the gaussian integer method in the hundred digit range. We also illustrate our results by successfully computing discrete logarithms with GNFS in a large prime field. 1.
Generating more MNT elliptic curves
, 2004
"... In their seminal paper, Miyaji, Nakabayashi and Takano [12] describe a simple method for the creation of elliptic curves of prime order with embedding degree 3, 4, or 6. Such curves are important for the realisation of pairingbased cryptosystems on ordinary (nonsupersingular) elliptic curves. ..."
Abstract

Cited by 12 (0 self)
 Add to MetaCart
In their seminal paper, Miyaji, Nakabayashi and Takano [12] describe a simple method for the creation of elliptic curves of prime order with embedding degree 3, 4, or 6. Such curves are important for the realisation of pairingbased cryptosystems on ordinary (nonsupersingular) elliptic curves. We provide an alternative derivation of their results, and extend them to allow for the generation of many more suitable curves.
Asymptotically optimal communication for torusbased cryptography
 In Advances in Cryptology (CRYPTO 2004), Springer LNCS 3152
, 2004
"... Abstract. We introduce a compact and efficient representation of elements of the algebraic torus. This allows us to design a new discretelog based publickey system achieving the optimal communication rate, partially answering the conjecture in [4]. For n the product of distinct primes, we construct ..."
Abstract

Cited by 11 (1 self)
 Add to MetaCart
Abstract. We introduce a compact and efficient representation of elements of the algebraic torus. This allows us to design a new discretelog based publickey system achieving the optimal communication rate, partially answering the conjecture in [4]. For n the product of distinct primes, we construct efficient ElGamal signature and encryption schemes in a subgroup of F ∗ qn in which the number of bits exchanged is only a φ(n)/n fraction of that required in traditional schemes, while the security offered remains the same. We also present a DiffieHellman key exchange protocol averaging only φ(n) log2 q bits of communication per key. For the cryptographically important cases of n = 30 and n = 210, we transmit a 4/5 and a 24/35 fraction, respectively, of the number of bits required in XTR [14] and recent CEILIDH [24] cryptosystems. 1
Cryptographic Counters and Applications to Electronic Voting
, 2001
"... We formalize the notion of a cryptographic counter, which allows a group of participants to increment and decrement a cryptographic representation of a (hidden) numerical value privately and robustly. ..."
Abstract

Cited by 10 (2 self)
 Add to MetaCart
We formalize the notion of a cryptographic counter, which allows a group of participants to increment and decrement a cryptographic representation of a (hidden) numerical value privately and robustly.