Results 1  10
of
95
Guide to Elliptic Curve Cryptography
, 2004
"... Elliptic curves have been intensively studied in number theory and algebraic geometry for over 100 years and there is an enormous amount of literature on the subject. To quote the mathematician Serge Lang: It is possible to write endlessly on elliptic curves. (This is not a threat.) Elliptic curves ..."
Abstract

Cited by 396 (17 self)
 Add to MetaCart
Elliptic curves have been intensively studied in number theory and algebraic geometry for over 100 years and there is an enormous amount of literature on the subject. To quote the mathematician Serge Lang: It is possible to write endlessly on elliptic curves. (This is not a threat.) Elliptic curves also figured prominently in the recent proof of Fermat's Last Theorem by Andrew Wiles. Originally pursued for purely aesthetic reasons, elliptic curves have recently been utilized in devising algorithms for factoring integers, primality proving, and in publickey cryptography. In this article, we aim to give the reader an introduction to elliptic curve cryptosystems, and to demonstrate why these systems provide relatively small block sizes, highspeed software and hardware implementations, and offer the highest strengthperkeybit of any known publickey scheme.
The NPcompleteness column: an ongoing guide
 Journal of Algorithms
, 1985
"... This is the nineteenth edition of a (usually) quarterly column that covers new developments in the theory of NPcompleteness. The presentation is modeled on that used by M. R. Garey and myself in our book ‘‘Computers and Intractability: A Guide to the Theory of NPCompleteness,’ ’ W. H. Freeman & ..."
Abstract

Cited by 190 (0 self)
 Add to MetaCart
This is the nineteenth edition of a (usually) quarterly column that covers new developments in the theory of NPcompleteness. The presentation is modeled on that used by M. R. Garey and myself in our book ‘‘Computers and Intractability: A Guide to the Theory of NPCompleteness,’ ’ W. H. Freeman & Co., New York, 1979 (hereinafter referred to as ‘‘[G&J]’’; previous columns will be referred to by their dates). A background equivalent to that provided by [G&J] is assumed, and, when appropriate, crossreferences will be given to that book and the list of problems (NPcomplete and harder) presented there. Readers who have results they would like mentioned (NPhardness, PSPACEhardness, polynomialtimesolvability, etc.) or open problems they would like publicized, should
Discrete Logarithms in Finite Fields and Their Cryptographic Significance
, 1984
"... Given a primitive element g of a finite field GF(q), the discrete logarithm of a nonzero element u GF(q) is that integer k, 1 k q  1, for which u = g k . The wellknown problem of computing discrete logarithms in finite fields has acquired additional importance in recent years due to its appl ..."
Abstract

Cited by 88 (6 self)
 Add to MetaCart
Given a primitive element g of a finite field GF(q), the discrete logarithm of a nonzero element u GF(q) is that integer k, 1 k q  1, for which u = g k . The wellknown problem of computing discrete logarithms in finite fields has acquired additional importance in recent years due to its applicability in cryptography. Several cryptographic systems would become insecure if an efficient discrete logarithm algorithm were discovered. This paper surveys and analyzes known algorithms in this area, with special attention devoted to algorithms for the fields GF(2 n ). It appears that in order to be safe from attacks using these algorithms, the value of n for which GF(2 n ) is used in a cryptosystem has to be very large and carefully chosen. Due in large part to recent discoveries, discrete logarithms in fields GF(2 n ) are much easier to compute than in fields GF(p) with p prime. Hence the fields GF(2 n ) ought to be avoided in all cryptographic applications. On the other hand, ...
A taxonomy of pairingfriendly elliptic curves
, 2006
"... Elliptic curves with small embedding degree and large primeorder subgroup are key ingredients for implementing pairingbased cryptographic systems. Such “pairingfriendly” curves are rare and thus require specific constructions. In this paper we give a single coherent framework that encompasses all ..."
Abstract

Cited by 82 (10 self)
 Add to MetaCart
Elliptic curves with small embedding degree and large primeorder subgroup are key ingredients for implementing pairingbased cryptographic systems. Such “pairingfriendly” curves are rare and thus require specific constructions. In this paper we give a single coherent framework that encompasses all of the constructions of pairingfriendly elliptic curves currently existing in the literature. We also include new constructions of pairingfriendly curves that improve on the previously known constructions for certain embedding degrees. Finally, for all embedding degrees up to 50, we provide recommendations as to which pairingfriendly curves to choose to best satisfy a variety of performance and security requirements.
The XTR public key system
, 2000
"... This paper introduces the XTR public key system. XTR is based on a new method to represent elements of a subgroup of a multiplicative group of a finite field. Application of XTR in cryptographic protocols leads to substantial savings both in communication and computational overhead without compromis ..."
Abstract

Cited by 82 (12 self)
 Add to MetaCart
This paper introduces the XTR public key system. XTR is based on a new method to represent elements of a subgroup of a multiplicative group of a finite field. Application of XTR in cryptographic protocols leads to substantial savings both in communication and computational overhead without compromising security.
Pairingbased Cryptography at High Security Levels
 Proceedings of Cryptography and Coding 2005, volume 3796 of LNCS
, 2005
"... Abstract. In recent years cryptographic protocols based on the Weil and Tate pairings on elliptic curves have attracted much attention. A notable success in this area was the elegant solution by Boneh and Franklin [7] of the problem of efficient identitybased encryption. At the same time, the secur ..."
Abstract

Cited by 79 (3 self)
 Add to MetaCart
Abstract. In recent years cryptographic protocols based on the Weil and Tate pairings on elliptic curves have attracted much attention. A notable success in this area was the elegant solution by Boneh and Franklin [7] of the problem of efficient identitybased encryption. At the same time, the security standards for public key cryptosystems are expected to increase, so that in the future they will be capable of providing security equivalent to 128, 192, or 256bit AES keys. In this paper we examine the implications of heightened security needs for pairingbased cryptosystems. We first describe three different reasons why highsecurity users might have concerns about the longterm viability of these systems. However, in our view none of the risks inherent in pairingbased systems are sufficiently serious to warrant pulling them from the shelves. We next discuss two families of elliptic curves E for use in pairingbased cryptosystems. The first has the property that the pairing takes values in the prime field Fp over which the curve is defined; the second family consists of supersingular curves with embedding degree k = 2. Finally, we examine the efficiency of the Weil pairing as opposed to the Tate pairing and compare a range of choices of embedding degree k, including k = 1 and k = 24. Let E be the elliptic curve 1.
On the Selection of PairingFriendly Groups
, 2003
"... We propose a simple algorithm to select group generators suitable for pairingbased cryptosystems. The selected parameters are shown to favor implementations of the Tate pairing that are at once conceptually simple and very efficient, with an observed performance about 2 to 10 times better than prev ..."
Abstract

Cited by 46 (12 self)
 Add to MetaCart
We propose a simple algorithm to select group generators suitable for pairingbased cryptosystems. The selected parameters are shown to favor implementations of the Tate pairing that are at once conceptually simple and very efficient, with an observed performance about 2 to 10 times better than previously reported implementations.
Unbelievable Security: Matching AES security using public key systems
 PROCEEDINGS ASIACRYPT 2001, LNCS 2248, SPRINGERVERLAG 2001, 67–86
, 2001
"... The Advanced Encryption Standard (AES) provides three levels of security: 128, 192, and 256 bits. Given a desired level of security for the AES, this paper discusses matching public key sizes for RSA and the ElGamal family of protocols. For the latter both traditional multiplicative groups of finit ..."
Abstract

Cited by 45 (4 self)
 Add to MetaCart
The Advanced Encryption Standard (AES) provides three levels of security: 128, 192, and 256 bits. Given a desired level of security for the AES, this paper discusses matching public key sizes for RSA and the ElGamal family of protocols. For the latter both traditional multiplicative groups of finite fields and elliptic curve groups are considered. The practicality of the resulting systems is commented upon. Despite the conclusions, this paper should not be interpreted as an endorsement of any particular public key system in favor of any other.
A knapsacktype public key cryptosystem based on arithmetic in finite fields
 IEEE Trans. Inform. Theory
, 1988
"... AbstractA new knapsacktype public key cryptosystem is introduced. The system is based on a novel application of arithmetic in finite fields, following a construction by Bose and Chowla. By appropriately choosing the parameters, one can control the density of the resulting knapsack, which is the ra ..."
Abstract

Cited by 40 (0 self)
 Add to MetaCart
AbstractA new knapsacktype public key cryptosystem is introduced. The system is based on a novel application of arithmetic in finite fields, following a construction by Bose and Chowla. By appropriately choosing the parameters, one can control the density of the resulting knapsack, which is the ratio between the number of elements in the knapsack and their sue in bits. In particular, the density can be made high enough to foil “lowdensity ” attacks against our system. At the moment, no attacks capable of “breaking ” this system in a reasonable amount of time are known. I.