Results 1  10
of
153
Term Rewriting Systems
, 1992
"... Term Rewriting Systems play an important role in various areas, such as abstract data type specifications, implementations of functional programming languages and automated deduction. In this chapter we introduce several of the basic comcepts and facts for TRS's. Specifically, we discuss Abstract Re ..."
Abstract

Cited by 567 (16 self)
 Add to MetaCart
Term Rewriting Systems play an important role in various areas, such as abstract data type specifications, implementations of functional programming languages and automated deduction. In this chapter we introduce several of the basic comcepts and facts for TRS's. Specifically, we discuss Abstract Reduction Systems
A Syntactic Approach to Type Soundness
 Information and Computation
, 1992
"... We present a new approach to proving type soundness for Hindley/Milnerstyle polymorphic type systems. The keys to our approach are (1) an adaptation of subject reduction theorems from combinatory logic to programming languages, and (2) the use of rewriting techniques for the specification of the la ..."
Abstract

Cited by 538 (21 self)
 Add to MetaCart
We present a new approach to proving type soundness for Hindley/Milnerstyle polymorphic type systems. The keys to our approach are (1) an adaptation of subject reduction theorems from combinatory logic to programming languages, and (2) the use of rewriting techniques for the specification of the language semantics. The approach easily extends from polymorphic functional languages to imperative languages that provide references, exceptions, continuations, and similar features. We illustrate the technique with a type soundness theorem for the core of Standard ML, which includes the first type soundness proof for polymorphic exceptions and continuations. 1 Type Soundness Static type systems for programming languages attempt to prevent the occurrence of type errors during execution. A definition of type error depends on a specific language and type system, but always includes the use of a function on arguments for which it is not defined, and the attempted application of a nonfunction. ...
A FormulaeasTypes Notion of Control
 In Conference Record of the Seventeenth Annual ACM Symposium on Principles of Programming Languages
, 1990
"... The programming language Scheme contains the control construct call/cc that allows access to the current continuation (the current control context). This, in effect, provides Scheme with firstclass labels and jumps. We show that the wellknown formulaeastypes correspondence, which relates a constr ..."
Abstract

Cited by 240 (0 self)
 Add to MetaCart
The programming language Scheme contains the control construct call/cc that allows access to the current continuation (the current control context). This, in effect, provides Scheme with firstclass labels and jumps. We show that the wellknown formulaeastypes correspondence, which relates a constructive proof of a formula ff to a program of type ff, can be extended to a typed Idealized Scheme. What is surprising about this correspondence is that it relates classical proofs to typed programs. The existence of computationally interesting "classical programs"  programs of type ff, where ff holds classically, but not constructively  is illustrated by the definition of conjunctive, disjunctive, and existential types using standard classical definitions. We also prove that all evaluations of typed terms in Idealized Scheme are finite.
Dynamic typing in a statically typed language
 ACM Trans. Program. Lang. Syst
, 1991
"... Abstract. Dynamic typing can be useful in statically typed languages. We extend the simply typed λcalculus with dynamic typing and elaborate additional features like polymorphism and subtyping. 1 ..."
Abstract

Cited by 156 (4 self)
 Add to MetaCart
Abstract. Dynamic typing can be useful in statically typed languages. We extend the simply typed λcalculus with dynamic typing and elaborate additional features like polymorphism and subtyping. 1
Type Inference with Polymorphic Recursion
 Transactions on Programming Languages and Systems
, 1991
"... The DamasMilner Calculus is the typed Acalculus underlying the type system for ML and several other strongly typed polymorphic functional languages such as Mirandal and Haskell. Mycroft has extended its problematic monomorphic typing rule for recursive definitions with a polymorphic typing rule. H ..."
Abstract

Cited by 135 (0 self)
 Add to MetaCart
The DamasMilner Calculus is the typed Acalculus underlying the type system for ML and several other strongly typed polymorphic functional languages such as Mirandal and Haskell. Mycroft has extended its problematic monomorphic typing rule for recursive definitions with a polymorphic typing rule. He proved the resulting type system, which we call the MilnerMycroft Calculus, sound with respect to Milner’s semantics, and showed that it preserves the principal typing property of the DamasMilner Calculus. The extension is of practical significance in typed logic programming languages and, more generally, in any language with (mutually) recursive definitions. In this paper we show that the type inference problem for the MilnerMycroft Calculus is logspace equivalent to semiunification, the problem of solving subsumption inequations between firstorder terms. This result has been proved independently by Kfoury et al. In connection with the recently established undecidability of semiunification this implies that typability in the MilnerMycroft Calculus is undecidable. We present some reasons why type inference with polymorphic recursion appears to be practical despite its undecidability. This also sheds some light on the observed practicality of ML
Confluence properties of Weak and Strong Calculi of Explicit Substitutions
 JOURNAL OF THE ACM
, 1996
"... Categorical combinators [12, 21, 43] and more recently oecalculus [1, 23], have been introduced to provide an explicit treatment of substitutions in the calculus. We reintroduce here the ingredients of these calculi in a selfcontained and stepwise way, with a special emphasis on confluence prope ..."
Abstract

Cited by 120 (7 self)
 Add to MetaCart
Categorical combinators [12, 21, 43] and more recently oecalculus [1, 23], have been introduced to provide an explicit treatment of substitutions in the calculus. We reintroduce here the ingredients of these calculi in a selfcontained and stepwise way, with a special emphasis on confluence properties. The main new results of the paper w.r.t. [12, 21, 1, 23] are the following: 1. We present a confluent weak calculus of substitutions, where no variable clashes can be feared. 2. We solve a conjecture raised in [1]: oecalculus is not confluent (it is confluent on ground terms only). This unfortunate result is "repaired" by presenting a confluent version of oecalculus, named the Envcalculus in [23], called here the confluent oecalculus.
Ellipsis and higherorder unification
 Linguistics and Philosophy
, 1991
"... We present a new method for characterizing the interpretive possibilities generated by elliptical constructions in natural language. Unlike previous analyses, which postulate ambiguity of interpretation or derivation in the full clause source of the ellipsis, our analysis requires no such hidden amb ..."
Abstract

Cited by 109 (1 self)
 Add to MetaCart
We present a new method for characterizing the interpretive possibilities generated by elliptical constructions in natural language. Unlike previous analyses, which postulate ambiguity of interpretation or derivation in the full clause source of the ellipsis, our analysis requires no such hidden ambiguity. Further, the analysis follows relatively directly from an abstract statement of the ellipsis interpretation problem. It predicts correctly a wide range of interactions between ellipsis and other semantic phenomena such as quantifier scope and bound anaphora. Finally, although the analysis itself is stated nonprocedurally, it admits of a direct computational method for generating interpretations. This article is available through the Computation and Language EPrint Archive as cmplg/9503008, and also appears in Linguistics and Philosophy 14(4):399–452. cmplg/9503008 Ellipsis and HigherOrder Unification 1
Functional interpretations of feasibly constructive arithmetic
 Annals of Pure and Applied Logic
, 1993
"... i ..."
Combinatory Reduction Systems: introduction and survey
 THEORETICAL COMPUTER SCIENCE
, 1993
"... Combinatory Reduction Systems, or CRSs for short, were designed to combine the usual firstorder format of term rewriting with the presence of bound variables as in pure λcalculus and various typed calculi. Bound variables are also present in many other rewrite systems, such as systems with simpl ..."
Abstract

Cited by 84 (9 self)
 Add to MetaCart
Combinatory Reduction Systems, or CRSs for short, were designed to combine the usual firstorder format of term rewriting with the presence of bound variables as in pure λcalculus and various typed calculi. Bound variables are also present in many other rewrite systems, such as systems with simplification rules for proof normalization. The original idea of CRSs is due to Aczel, who introduced a restricted class of CRSs and, under the assumption of orthogonality, proved confluence. Orthogonality means that the rules are nonambiguous (no overlap leading to a critical pair) and leftlinear (no global comparison of terms necessary). We introduce the class of orthogonal CRSs, illustrated with many examples, discuss its expressive power, and give an outline of a short proof of confluence. This proof is a direct generalization of Aczel's original proof, which is close to the wellknown confluence proof for λcalculus by Tait and MartinLof. There is a wellknown connection between the para...
Higherorder narrowing with definitional trees
 Neural Computation
, 1996
"... Functional logic languages with a sound and complete operational semantics are mainly based on narrowing. Due to the huge search space of simple narrowing, steadily improved narrowing strategies have been developed in the past. Needed narrowing is currently the best narrowing strategy for firstord ..."
Abstract

Cited by 78 (23 self)
 Add to MetaCart
Functional logic languages with a sound and complete operational semantics are mainly based on narrowing. Due to the huge search space of simple narrowing, steadily improved narrowing strategies have been developed in the past. Needed narrowing is currently the best narrowing strategy for firstorder functional logic programs due to its optimality properties w.r.t. the length of derivations and the number of computed solutions. In this paper, we extend the needed narrowing strategy to higherorder functions and λterms as data structures. By the use of definitional trees, our strategy computes only incomparable solutions. Thus, it is the first calculus for higherorder functional logic programming which provides for such an optimality result. Since we allow higherorder logical variables denoting λterms, applications go beyond current functional and logic programming languages.