Results 1  10
of
24
Implicitization using Moving Curves and Surfaces
, 1995
"... This paper presents a radically new approach to the century old problem of computing the implicit equation of a parametric surface. For surfaces without base points, the new method expresses the implicit equation in a determinant which is one fourth the size of the conventional expression based on D ..."
Abstract

Cited by 56 (4 self)
 Add to MetaCart
This paper presents a radically new approach to the century old problem of computing the implicit equation of a parametric surface. For surfaces without base points, the new method expresses the implicit equation in a determinant which is one fourth the size of the conventional expression based on Dixon's resultant. If base points do exist, previous implicitization methods either fail or become much more complicated, while the new method actually simplifies.
SYMMETRIC TENSOR DECOMPOSITION
, 2009
"... We present an algorithm for decomposing a symmetric tensor of dimension n and order d as a sum of of rank1 symmetric tensors, extending the algorithm of Sylvester devised in 1886 for symmetric tensors of dimension 2. We exploit the known fact that every symmetric tensor is equivalently represented ..."
Abstract

Cited by 28 (4 self)
 Add to MetaCart
(Show Context)
We present an algorithm for decomposing a symmetric tensor of dimension n and order d as a sum of of rank1 symmetric tensors, extending the algorithm of Sylvester devised in 1886 for symmetric tensors of dimension 2. We exploit the known fact that every symmetric tensor is equivalently represented by a homogeneous polynomial in n variables of total degree d. Thus the decomposition corresponds to a sum of powers of linear forms. The impact of this contribution is twofold. First it permits an efficient computation of the decomposition of any tensor of subgeneric rank, as opposed to widely used iterative algorithms with unproved convergence (e.g. Alternate Least Squares or gradient descents). Second, it gives tools for understanding uniqueness conditions, and for detecting the tensor rank.
Computation of canonical forms for ternary cubics
 in ISSAC. 2000
, 2002
"... In this paper we conduct a careful study of the equivalence classes of ternary cubics under general complex linear changes of variables. Our new results are based on the method of moving frames and involve triangular decompositions of algebraic varieties. We provide a computationally efficient algor ..."
Abstract

Cited by 19 (6 self)
 Add to MetaCart
(Show Context)
In this paper we conduct a careful study of the equivalence classes of ternary cubics under general complex linear changes of variables. Our new results are based on the method of moving frames and involve triangular decompositions of algebraic varieties. We provide a computationally efficient algorithm that matches an arbitrary ternary cubic with its canonical form and explicitly computes a corresponding linear change of coordinates. We also describe a classification of the symmetry groups of ternary cubics.
An algorithm for the real interval eigenvalue problem. Research Report RR6680
, 2008
"... HAL is a multidisciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L’archive ouverte p ..."
Abstract

Cited by 9 (8 self)
 Add to MetaCart
(Show Context)
HAL is a multidisciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et a ̀ la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés. appor t de r ech er ch e
Parsac2: Parallel Computer Algebra On The DeskTop
, 1995
"... We give an introduction to programming methods, software systems, and algorithms, suitable for parallelizing Computer Algebra on modern multiprocessor workstations. As concrete examples we present multithreaded programming and its use in the PARSAC2 system for parallel symbolic computation, and we ..."
Abstract

Cited by 7 (6 self)
 Add to MetaCart
We give an introduction to programming methods, software systems, and algorithms, suitable for parallelizing Computer Algebra on modern multiprocessor workstations. As concrete examples we present multithreaded programming and its use in the PARSAC2 system for parallel symbolic computation, and we present some examples of parallel algorithms useful for solving systems of polynomial equations.
Multihomogeneous polynomial decomposition using moment matrices
 International Symposium on Symbolic and Algebraic Computation
, 2011
"... HAL is a multidisciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L’archive ouverte p ..."
Abstract

Cited by 6 (3 self)
 Add to MetaCart
(Show Context)
HAL is a multidisciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et a ̀ la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
BORDER BASIS REPRESENTATION OF A GENERAL QUOTIENT ALGEBRA
 ISSAC'12 (2012) 265272
, 2012
"... In this paper, we generalized the construction of border bases to nonzero dimensional ideals for normal forms compatible with the degree, tackling the remaining obstacle for a general application of border basis methods. First, we give conditions to have a border basis up to a given degree. Next, w ..."
Abstract

Cited by 3 (1 self)
 Add to MetaCart
In this paper, we generalized the construction of border bases to nonzero dimensional ideals for normal forms compatible with the degree, tackling the remaining obstacle for a general application of border basis methods. First, we give conditions to have a border basis up to a given degree. Next, we describe a new stopping criteria to determine when the reduction with respect to the leading terms is a normal form. This test based on the persistence and regularity theorems of Gotzmann yields a new algorithm for computing a border basis of any ideal, which proceeds incrementally degree by degree until its regularity. We detail it, prove its correctness, present its implementation and report some experimentations which illustrate its practical good behavior.
Homogeneous Buchberger algorithms and Sullivant’s computational commutative algebra challenge
"... We give a variant of the homogeneous Buchberger algorithm for positively graded lattice ideals. Using this algorithm we solve the Sullivant computational commutative algebra challenge 1. 1 ..."
Abstract

Cited by 2 (1 self)
 Add to MetaCart
(Show Context)
We give a variant of the homogeneous Buchberger algorithm for positively graded lattice ideals. Using this algorithm we solve the Sullivant computational commutative algebra challenge 1. 1
Toric border bases
, 2014
"... Abstract. We extend the theory and the algorithms of Border Bases to systems of Laurent polynomial equations, defining “toric ” roots. Instead of introducing new variables and new relations to saturate by the variable inverses, we propose a more efficient approach which works directly with the varia ..."
Abstract

Cited by 1 (0 self)
 Add to MetaCart
(Show Context)
Abstract. We extend the theory and the algorithms of Border Bases to systems of Laurent polynomial equations, defining “toric ” roots. Instead of introducing new variables and new relations to saturate by the variable inverses, we propose a more efficient approach which works directly with the variables and their inverse. We show that the commutation relations and the inversion relations characterize toric border bases. We explicitly describe the first syzygy module associated to a toric border basis in terms of these relations. Finally, a new border basis algorithm for Laurent polynomials is described and a proof of its termination is given for zerodimensional toric ideals. 1.